
From Monolith to Micro-services with Kubernetes
16 Mar 2019, FOSS Asia, Singapore

Michael Bright, @mjbright
Slides & source code at https://mjbright.github.io/Talks 1 / 74

https://mjbright.github.io/Talks

Michael Bright, @mjbright

Freelance Consultant & Trainer on CloudNative Solutions

Past researcher, dev, team lead, dev advocate

British, living in France for 27-years

Docker Community Lead, Python User Group

 linkedin.com/in/mjbright github.com/mjbright

2 / 74

Outline
[Why?] Monoliths to Micro-services

Orchestration: Kubernetes

Deployment Strategies

Architecture Design patterns

Summary

@mjbright 3 / 74

Outline
[Why?] Monoliths to Micro-services

Orchestration: Kubernetes

Deployment Strategies

Architecture Design patterns

Summary

@mjbright 4 / 74

First ... a bit of history

@mjbright 5 / 74

First ... a bit of history

Note: The future will be hybrid ... (technologies, providers, on-prem/cloud ...)

@mjbright 6 / 74

[Why?] Monoliths to Micro-services
Traditionally software has been delivered as large packages which can only be
deployed, scaled, upgraded, reimplemented as a whole.

web

Problem: A paradigm ill-adapted to enterprise or web-scale

@mjbright 7 / 74

[Why?] Monoliths to Micro-services
Traditionally software has been delivered as large packages which can only be
deployed, scaled, upgraded, reimplemented as a whole.

web

Problem: A paradigm ill-adapted to enterprise or web-scale

Tightly-coupled components exist as a unit, are difficult to reuse
Waterfall release cycles make software difficult to patch
Difficult to innovate due to slow release cycles

@mjbright 7 / 74

Monoliths to Micro-services
Micro-services use small loosely-coupled software components

Individual components can be deployed, scaled, upgraded, replaced ...

web

Micro-service architecture components are lightly-coupled

interconnected by network
can be scaled independently
can be deployed/upgraded independently

@mjbright 8 / 74

Advantages of Micro-services
Separation of Concerns: "do one thing well"

@mjbright 9 / 74

Advantages of Micro-services
Separation of Concerns: "do one thing well"

Smaller focussed Projects/teams

@mjbright 9 / 74

Advantages of Micro-services
Separation of Concerns: "do one thing well"

Smaller focussed Projects/teams

Ease Scaling, Deployment, Testing, Evolution

@mjbright 9 / 74

Advantages of Micro-services
Separation of Concerns: "do one thing well"

Smaller focussed Projects/teams

Ease Scaling, Deployment, Testing, Evolution

Allow for composition of new services

@mjbright 9 / 74

Advantages of Micro-services
Separation of Concerns: "do one thing well"

Smaller focussed Projects/teams

Ease Scaling, Deployment, Testing, Evolution

Allow for composition of new services

Can be re-implemented with "Best in class" tech

@mjbright 9 / 74

Advantages of Micro-services
Separation of Concerns: "do one thing well"

Smaller focussed Projects/teams

Ease Scaling, Deployment, Testing, Evolution

Allow for composition of new services

Can be re-implemented with "Best in class" tech

So are they a panacea?

@mjbright 9 / 74

Disadvantages
Greater complexity

Require orchestration, and rigorous component version management
Need to evolve to greater organizational complexity
Monitoring, debugging, end-2-end test are more difficult

@mjbright 10 / 74

Disadvantages
Greater complexity

Require orchestration, and rigorous component version management
Need to evolve to greater organizational complexity
Monitoring, debugging, end-2-end test are more difficult

Network communication is critical
Need good error handling, Performance, Circuit-breakers

@mjbright 10 / 74

Disadvantages
Greater complexity

Require orchestration, and rigorous component version management
Need to evolve to greater organizational complexity
Monitoring, debugging, end-2-end test are more difficult

Network communication is critical
Need good error handling, Performance, Circuit-breakers

Useless without adopting best practices
Behaviour and Test-Driven Development, CI/CD
Require rigorous documentation of interfaces/APIs
Stable APIs and backward-compatibility support

@mjbright 10 / 74

Outline
[Why?] Monoliths to Micro-services

Orchestration: Kubernetes

Deployment Strategies

Architecture Design patterns

Summary

@mjbright 11 / 74

Orchestration: Kubernetes
Problem: As our systems scale it becomes impossible to manage 1000's of
diverse containers running across a data center of 100's of nodes.

on which nodes should you schedule?
to ensure availability
to satisfy affinity, non-affinity constraints
to take advantage of specialized h/w

@mjbright 12 / 74

Orchestration: Kubernetes
Problem: As our systems scale it becomes impossible to manage 1000's of
diverse containers running across a data center of 100's of nodes.

on which nodes should you schedule?
to ensure availability
to satisfy affinity, non-affinity constraints
to take advantage of specialized h/w

which containers are malfunctioning?

@mjbright 12 / 74

Orchestration: Kubernetes
Problem: As our systems scale it becomes impossible to manage 1000's of
diverse containers running across a data center of 100's of nodes.

on which nodes should you schedule?
to ensure availability
to satisfy affinity, non-affinity constraints
to take advantage of specialized h/w

which containers are malfunctioning?
which are started and ready to go?

@mjbright 12 / 74

Orchestration: Kubernetes
Problem: As our systems scale it becomes impossible to manage 1000's of
diverse containers running across a data center of 100's of nodes.

on which nodes should you schedule?
to ensure availability
to satisfy affinity, non-affinity constraints
to take advantage of specialized h/w

which containers are malfunctioning?
which are started and ready to go?
how to easily upgrade applications?

@mjbright 12 / 74

Orchestration: Kubernetes
Problem: As our systems scale it becomes impossible to manage 1000's of
diverse containers running across a data center of 100's of nodes.

on which nodes should you schedule?
to ensure availability
to satisfy affinity, non-affinity constraints
to take advantage of specialized h/w

which containers are malfunctioning?
which are started and ready to go?
how to easily upgrade applications?
how to auto-scale applications?

@mjbright 12 / 74

We need Orchestration

@mjbright13 / 74

Orchestration Feature Wish-list
Health checks - to Verify when a task is ready to accept traffic
Dynamic port-mapping - Ports are assigned dynamically when a new
container is spun up
Zero-downtime deployments - Deployments do not disrupt end users
Service discovery - Automatic detection of new containers and services
Auto scaling - Automatically scale resources up or down based on the
load

Provisioning - New containers should select hosts based on resources and
configuration

Other - Load balancing, logging, monitoring, authentication and
authorization, security... predictability, scalability, and high availability...

@mjbright 14 / 74

Kubernetes - Architecture

Worker
Node 1

Master Node

Worker
Node 2

Worker
Node 3

@mjbright 15 / 74

Kubernetes - Master Nodes

etcd
 Master

Master
Master

API

GUI
(dashboard)

CLI
(kubectl)

API
Server

Scheduler Controller

@mjbright 16 / 74

Kubernetes - Worker Nodes

Pod

Kubelet Container
Engine

kube-proxy

flat
network

Pod

Pod

Pod
Pod
Pod

dashboardkube-dns
Add-ons

@mjbright 17 / 74

Kubernetes - Pods

same ip, e.g. 192.168.1.20

Containers share some namespaces:
 - PID, IPC, network , time sharing

A pod houses one or more containers

SidecarMain container

@mjbright 18 / 74

Kubernetes Demo

Master Node
"Worker"

Docker Desktop tainted single-node

Flask1 Flask2 Flask3

Redis

@mjbright 19 / 74

Kubernetes - Deploying Redis

kubectl create -f redis-deployment.yaml deployment

ReplicaSet

Pod1
2e76: redis

@mjbright 20 / 74

Kubernetes - Deploying Redis

@mjbright 21 / 74

Kubernetes - Deploying Redis (yaml)

@mjbright 22 / 74

Kubernetes - Deploying Flask

kubectl create -f flask-deployment.yaml deployment

ReplicaSet

Pod2
1f3d: flask:v1

Pod1
2e76: flask:v1

@mjbright 23 / 74

Kubernetes - Deploying Flask
kubectl run flask-app --image=$IMAGE --port=5000

$ kubectl apply -f flask-deployment.yaml
deployment.extensions "flask-app" created

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-app-8577b44db-96cht 0/1 Pending 0 1s
redis-68595c4d95-rr4pr 0/1 ContainerCreating 0 1s

@mjbright 24 / 74

Kubernetes - Deploying Flask (yaml)
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 run: flask-app
 name: flask-app
spec:
 replicas: 1
 selector:
 matchLabels:
 run: flask-app
 template:
 metadata:
 labels:
 run: flask-app
 spec:
 containers:
 - image: mjbright/flask-web:v1
 name: flask-app
 ports:
 - containerPort: 5000

@mjbright 25 / 74

Operations - Scaling
kubectl scale deploy flask-app --replicas=4

$ kubectl edit -f flask-deploy.yaml

...
spec:
 replicas: 4

@mjbright 26 / 74

Kubernetes - Scaling Flask (yaml)
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 run: flask-app
 name: flask-app
spec:
 replicas: 4
 selector:
 matchLabels:
 run: flask-app
 template:
 metadata:
 labels:
 run: flask-app
 spec:
 containers:
 - image: mjbright/flask-web:v1
 name: flask-app
 ports:
 - containerPort: 5000

@mjbright 27 / 74

Kubernetes - Scaling Flask
$ kubectl apply -f flask-deployment-r4-v1.yaml
deployment.extensions "flask-app" created

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-app-8577b44db-96cht 1/4 Pending 0 1h
redis-68595c4d95-rr4pr 1/1 Running 0 1h

@mjbright 28 / 74

Outline
[Why?] Monoliths to Micro-services

Orchestration: Kubernetes

Deployment Strategies

Architecture Design patterns

Summary

@mjbright 29 / 74

Deployment Strategies
Problem: How can we simply/automatically upgrade micro-services ?

across a data center

in the cloud

@mjbright 30 / 74

Deployment Strategies
Problem: How can we simply/automatically upgrade micro-services ?

across a data center

in the cloud

Solution: Several deployment strategies exist

Some strategies can be implemented by Kubernetes alone

Some strategies must be handled by external routing

@mjbright 30 / 74

Micro-service Deployment Strategies
Service Upgrade Strategies

Health Checks

Strangler Pattern - migration pattern

@mjbright 31 / 74

Operations - Service Upgrade Strategies
Several strategies exist
Ref: Kubernetes deployment strategies, Container Solutions, github

recreate - terminate old version before releasing new one

@mjbright 32 / 74

https://container-solutions.com/kubernetes-deployment-strategies/
https://github.com/ContainerSolutions/k8s-deployment-strategies

Operations - Service Upgrade Strategies
Several strategies exist
Ref: Kubernetes deployment strategies, Container Solutions, github

recreate - terminate old version before releasing new one

ramped - gradually release a new version on a rolling update fashion

@mjbright 32 / 74

https://container-solutions.com/kubernetes-deployment-strategies/
https://github.com/ContainerSolutions/k8s-deployment-strategies

Operations - Service Upgrade Strategies
Several strategies exist
Ref: Kubernetes deployment strategies, Container Solutions, github

recreate - terminate old version before releasing new one

ramped - gradually release a new version on a rolling update fashion

blue/green - release new version alongside old version then switch

@mjbright 32 / 74

https://container-solutions.com/kubernetes-deployment-strategies/
https://github.com/ContainerSolutions/k8s-deployment-strategies

Operations - Service Upgrade Strategies
Several strategies exist
Ref: Kubernetes deployment strategies, Container Solutions, github

recreate - terminate old version before releasing new one

ramped - gradually release a new version on a rolling update fashion

blue/green - release new version alongside old version then switch

canary - release new version to subset of users, proceed to full rollout

@mjbright 32 / 74

https://container-solutions.com/kubernetes-deployment-strategies/
https://github.com/ContainerSolutions/k8s-deployment-strategies

Operations - Service Upgrade Strategies
Several strategies exist
Ref: Kubernetes deployment strategies, Container Solutions, github

recreate - terminate old version before releasing new one

ramped - gradually release a new version on a rolling update fashion

blue/green - release new version alongside old version then switch

canary - release new version to subset of users, proceed to full rollout

a/b testing - release new version to subset of users in a precise way
(HTTP headers, cookie, weight, etc.).

@mjbright 32 / 74

https://container-solutions.com/kubernetes-deployment-strategies/
https://github.com/ContainerSolutions/k8s-deployment-strategies

Operations - Service Upgrade Strategies
Ramped
kubectl set image deploy flask-app flask-app=mjbright/flask-web:v2

$ kubectl edit -f flask-deploy.yaml
$ kubectl rollout status deployment/flask-app

...
 spec:
 containers:
 - image: mjbright/flask-web:v2

@mjbright 33 / 74

Demo

Master Node
"Worker"

Docker Desktop tainted single-node

Flask1 Flask2 Flask3

Redis

@mjbright 34 / 74

Containers - Are you healthy, ready ?
Problem: But how can the system determine if a Service is healthy and
available

We'd like the system to not route traffic to unhealthy service instances.

@mjbright 35 / 74

Containers - Are you healthy, ready ?
Problem: But how can the system determine if a Service is healthy and
available

We'd like the system to not route traffic to unhealthy service instances.

Kubernetes Healthchecks (Liveness and Readiness probes) provide a
solution.

Ref: Kubernetes Liveness, Readiness Probes Documentation

Liveness probe can be used to force re-creation of blocked image

Readiness probe can be used to await startup

@mjbright 35 / 74

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Operations - Healthchecks

Liveness probes
This probe is used to establish if the container is healthy

(or blocked, unable to progress).

The probe can specify

A command to execute
An http request to try
A TCP request to try

@mjbright 36 / 74

Operations - Healthchecks

Liveness probes
This probe is used to establish if the container is healthy

(or blocked, unable to progress).

The probe can specify

A command to execute
An http request to try
A TCP request to try

Readiness probes
Once started the container still needs time before being able to accept
traffic

This probe tests the readiness to receive and process requests

Probe types are as for Liveness probes

@mjbright 36 / 74

Operations - Liveness probes
apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-exec
spec:
 containers:
 - name: liveness
 image: k8s.gcr.io/busybox
 args:
 - /bin/sh
 - -c
 - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
 livenessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 initialDelaySeconds: 5
 periodSeconds: 5

@mjbright 37 / 74

Operations - Readiness probes
It is sufficient to replace 'livenessProbe:' by 'readinessProbe:' in the yaml

readinessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 initialDelaySeconds: 5
 periodSeconds: 5

@mjbright 38 / 74

How to Migrate to Micro-services ?
Problem: We may not have the luxury of a Greenfield deployment !!

So how can we migrate an existing Monolith to Micro-services ?

@mjbright 39 / 74

How to Migrate to Micro-services ?
Problem: We may not have the luxury of a Greenfield deployment !!

So how can we migrate an existing Monolith to Micro-services ?

It's a monolith after all !

@mjbright 39 / 74

How to Migrate to Micro-services ?
Problem: We may not have the luxury of a Greenfield deployment !!

So how can we migrate an existing Monolith to Micro-services ?

It's a monolith after all !

Do we wait 6 months before having a new implementation

(*with no extra features!*) ?

@mjbright 39 / 74

How to Migrate to Micro-services ?
Problem: We may not have the luxury of a Greenfield deployment !!

So how can we migrate an existing Monolith to Micro-services ?

It's a monolith after all !

Do we wait 6 months before having a new implementation

(*with no extra features!*) ?

The Strangler Pattern provides a possible solution.

@mjbright 39 / 74

Migration - Strangler Pattern
The Strangler is a pattern used in the initial migration from a Monolithic
architecture to a Micro-services architecture

Ref: Azure Docs - "Strangler pattern"

@mjbright 40 / 74

https://docs.microsoft.com/en-us/azure/architecture/patterns/strangler

Micro-service - Architecture Design Patterns
Here, we are not concerned with:

Standard Component Design Patterns

Micro-services themselves (!) - Fine-grained SOA

Sidecar

@mjbright 41 / 74

Micro-service - Architecture Design Patterns
We are concerned with:

Exposing Services

Ingress
providing access to the Kubernetes cluster ...

@mjbright 42 / 74

Micro-service - Architecture Design Patterns
We are concerned with:

Exposing Services

Ingress
providing access to the Kubernetes cluster ...

and ways of providing offload-functionality

API Gateway

Service Mesh

Hybrid Apps - "API Gateway Pattern"

@mjbright 42 / 74

Micro-service - Architecture Design Patterns
We are concerned with:

Exposing Services

Ingress
providing access to the Kubernetes cluster ...

and ways of providing offload-functionality

API Gateway

Service Mesh

Hybrid Apps - "API Gateway Pattern"
Note: This is the new war-zone as API Gateways battle it out, Service Meshes
battle it out and both battle it out!

@mjbright 42 / 74

Accessing our Services
Problem: We've deployed, scaled & upgraded Services across our Cluster

@mjbright 43 / 74

Accessing our Services
Problem: We've deployed, scaled & upgraded Services across our Cluster

But how do we access those services ?

@mjbright 43 / 74

Accessing our Services
Problem: We've deployed, scaled & upgraded Services across our Cluster

But how do we access those services ?

We can access the Pods/containers directly at their IP and port addresses

@mjbright 43 / 74

Accessing our Services
Problem: We've deployed, scaled & upgraded Services across our Cluster

But how do we access those services ?

We can access the Pods/containers directly at their IP and port addresses

Don't !! - they are ephemereal

@mjbright 43 / 74

Accessing our Services
Problem: We've deployed, scaled & upgraded Services across our Cluster

But how do we access those services ?

We can access the Pods/containers directly at their IP and port addresses

Don't !! - they are ephemereal

What happens if a Pod dies ... it just might happen ;-)

@mjbright 43 / 74

Accessing our Services
Problem: We've deployed, scaled & upgraded Services across our Cluster

But how do we access those services ?

We can access the Pods/containers directly at their IP and port addresses

Don't !! - they are ephemereal

What happens if a Pod dies ... it just might happen ;-)

(it's a joke: it will happen)

@mjbright 43 / 74

Accessing our Services
Problem: We've deployed, scaled & upgraded Services across our Cluster

But how do we access those services ?

We can access the Pods/containers directly at their IP and port addresses

Don't !! - they are ephemereal

What happens if a Pod dies ... it just might happen ;-)

(it's a joke: it will happen)

Also - we don't want to expose our infrastructure details !!

@mjbright 43 / 74

Accessing our Services
Problem: We've deployed, scaled & upgraded Services across our Cluster

But how do we access those services ?

We can access the Pods/containers directly at their IP and port addresses

Don't !! - they are ephemereal

What happens if a Pod dies ... it just might happen ;-)

(it's a joke: it will happen)

Also - we don't want to expose our infrastructure details !!

Also - they should be on isolated networks

@mjbright 43 / 74

Accessing our Services
Problem: We've deployed, scaled & upgraded Services across our Cluster

But how do we access those services ?

We can access the Pods/containers directly at their IP and port addresses

Don't !! - they are ephemereal

What happens if a Pod dies ... it just might happen ;-)

(it's a joke: it will happen)

Also - we don't want to expose our infrastructure details !!

Also - they should be on isolated networks

So we provide well-known endpoints to reliably/safely expose services

@mjbright 43 / 74

Kubernetes - Exposing Services
The general pattern is to provide a cluster-wide, well-known endpoint which
remains available as Pods come and go

Master User

WorkerWorker

pod
pod

pod
pod

Service
IP:port

@mjbright 44 / 74

Design Pattern - Services
Services can be exposed via

NodePort

HostPort

ClusterIP

LoadBalancer

@mjbright 45 / 74

Exposing Services (NodePort)

Master User

WorkerWorker

pod
pod

pod
pod

IP:port

User connects

to IP/port of one

of the NodesIP:port

Service

@mjbright 46 / 74

Exposing Services (LoadBalancer)

Master User

Worker

pod
pod

IP:port External
Load Balancer

Worker

pod
pod

Service

@mjbright 47 / 74

Exposing Services (IngressController)

Master User

Worker

pod
pod

Ingressroute

Worker

pod
pod

Service

@mjbright 48 / 74

Exposing Redis Service (LoadBalancer)
kubectl expose deployment redis --type=LoadBalancer

$ kubectl apply -f redis-service.yaml
service "redis" created

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 5h
redis LoadBalancer 10.101.158.201 <pending> 6379:31218/TCP 1s

@mjbright 49 / 74

Exposing Redis Service (LoadBalancer)
apiVersion: v1
kind: Service
metadata:
 labels:
 run: redis
 name: redis
spec:
 ports:
 - port: 6379
 protocol: TCP
 targetPort: 6379
 selector:
 run: redis
 type: LoadBalancer

@mjbright 50 / 74

Exposing Flask Service (LoadBalancer)
kubectl expose deployment flask-app --type=LoadBalancer

$ kubectl apply -f flask-service.yaml
service "flask-app" created

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
flask-app LoadBalancer 10.103.154.19 <pending> 5000:32201/TCP 1s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 5h
redis LoadBalancer 10.101.158.201 <pending> 6379:31218/TCP 2s

@mjbright 51 / 74

Exposing Flask Service (LoadBalancer)
apiVersion: v1
kind: Service
metadata:
 labels:
 run: flask-app
 name: flask-app
spec:
 ports:
 - port: 5000
 protocol: TCP
 targetPort: 5000
 selector:
 run: flask-app
 type: LoadBalancer

@mjbright 52 / 74

Design Pattern - Ingress
Ingress is the general term for controlling incoming traffic

(and *Egress* is the term for *outgoing* traffic)

@mjbright 53 / 74

Design Pattern - Ingress
Ingress is the general term for controlling incoming traffic

(and *Egress* is the term for *outgoing* traffic)

In the context of Kubernetes it refers to the ability (limited feature set) to
control incoming traffic. See Kubernetes Docs - Ingress

@mjbright 53 / 74

https://kubernetes.io/docs/concepts/services-networking/ingress/

Design Pattern - Ingress
Ingress is the general term for controlling incoming traffic

(and *Egress* is the term for *outgoing* traffic)

In the context of Kubernetes it refers to the ability (limited feature set) to
control incoming traffic. See Kubernetes Docs - Ingress

A set of Ingress Rules is specified to be implemented by a Kubernetes
Controller which typically implements Load Balancer, Gateway features.

There are many projects providing such controller functionality such as Nginx,
HAproxy, Ambassador, Gloo, Traefik

@mjbright 53 / 74

https://kubernetes.io/docs/concepts/services-networking/ingress/

Exposing Services (Ingress)
$ minikube addons enable ingress
ingress was successfully enabled

$ kubectl apply -f misc/ingress-definition.yaml
ingress.extensions "ingress-definitions" created

$ sudo vi /etc/hosts
...
192.168.99.100 minikube.test flaskapp.test

@mjbright 54 / 74

Exposing Services (Ingress)
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: ingress-definitions
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 backend:
 serviceName: default-http-backend
 servicePort: 80
 rules:
 - host: minikube.test
 http:
 paths:
 - path: /
 backend:
 serviceName: k8sdemo
 servicePort: 8080
 - host: flaskapp.test
 http:
 paths:
 - path: /flask
 backend:
 serviceName: flask-app
 servicePort: 5000

@mjbright 55 / 74

Exposing Services (Ingress)
$ minikube service list
|-------------|----------------------|-----------------------------|
NAMESPACE	NAME	URL
default	flask-app	http://192.168.99.100:32201
default	k8sdemo	http://192.168.99.100:31280
default	redis	http://192.168.99.100:31218
kube-system	kubernetes-dashboard	http://192.168.99.100:30000
-------------	----------------------	-----------------------------

$ curl http://192.168.99.100:31280

$ curl http://minikube.test/k8sdemo

@mjbright 56 / 74

Exposing Services (Ingress)
$ minikube service list
|-------------|----------------------|-----------------------------|
NAMESPACE	NAME	URL
default	flask-app	http://192.168.99.100:32201
default	k8sdemo	http://192.168.99.100:31280
default	redis	http://192.168.99.100:31218
kube-system	kubernetes-dashboard	http://192.168.99.100:30000
-------------	----------------------	-----------------------------

$ curl http://192.168.99.100:32201
[flask-app-8577b44db-kbwpn] Redis counter value=214

$ curl http://flaskapp.test/flask
[flask-app-8577b44db-kbwpn] Redis counter value=215

@mjbright 57 / 74

Design Pattern - API Gateway
Ref: "What is an API Gateway?"

Classic API Gateways date back to Web Service (SOAP APIs) which offloaded
Ingress functions into a single system.

API Gateways are API proxies between the client (API consumer) and server
(API Provider).

API Security

API Control and governance

API Monitoring

API Administration

API Transformation: See "API Gateway Pattern"

@mjbright 58 / 74

https://apifriends.com/api-security/api-gateway-definition/

Design Pattern - API Gateway

Service 1
(REST/http)

API Gateway

Service2
(JSON-RPC)

Service3
(WAMP)

https://api.com/....

External entrypoint exposes
APIs

Offloads common Ingress functions => reduces µ-service complexity

rate limiting, security, authorisation, DDOS protection
Protocol version translation, e.g. REST to SOAP, *-RPC ...
TLS decryption/encryption

Hides internal infrastructure detail => controls access

service routing, load-balancing
Allows to refactor/scale/mock internal implementation

@mjbright 59 / 74

Design Pattern - API Gateway

Service 1
(REST/http)

API Gateway

Service2
(JSON-RPC)

Service3
(WAMP)

https://api.com/....

External entrypoint exposes
APIs

Offloads common Ingress functions => reduces µ-service complexity

rate limiting, security, authorisation, DDOS protection
Protocol version translation, e.g. REST to SOAP, *-RPC ...
TLS decryption/encryption

Hides internal infrastructure detail => controls access

service routing, load-balancing
Allows to refactor/scale/mock internal implementation

Needs to scale, be H.A.

@mjbright 59 / 74

Design Pattern - API Gateway
There are many API Gateways including

NGInx, HA-Proxy,

Newer generation: Envoy-based such as Ambassador, Gloo

@mjbright 60 / 74

Design Pattern - API Gateway
There are many API Gateways including

NGInx, HA-Proxy,

Newer generation: Envoy-based such as Ambassador, Gloo

But can API Gateways resist the pressure coming from the next contender ...

@mjbright 60 / 74

Design Pattern - Service Mesh
Problem: Micro-services are fine, but we see the need for common functions

Logging and tracing
Reliable network communication
Encryption betweem components

@mjbright 61 / 74

Design Pattern - Service Mesh
Problem: Micro-services are fine, but we see the need for common functions

Logging and tracing
Reliable network communication
Encryption betweem components

BUT if every micro-service reimplements the same functionalities we will get
micro-monoliths !!

@mjbright 61 / 74

Design Pattern - Service Mesh
Problem: Micro-services are fine, but we see the need for common functions

Logging and tracing
Reliable network communication
Encryption betweem components

BUT if every micro-service reimplements the same functionalities we will get
micro-monoliths !!

The problem is compounded by the polyglot nature of micro-services,
requiring good library support for functions

@mjbright 61 / 74

Design Pattern - Service Mesh
Problem: Micro-services are fine, but we see the need for common functions

Logging and tracing
Reliable network communication
Encryption betweem components

BUT if every micro-service reimplements the same functionalities we will get
micro-monoliths !!

The problem is compounded by the polyglot nature of micro-services,
requiring good library support for functions

Service Mesh helps to address this issue by offloading such functionality

This keeps our micro-services small and simple.

Offload-functionality is provided through Sidecar containers - not libraries.

@mjbright 61 / 74

Design Pattern - Service Mesh
Abstraction above TCP/IP, secure reliable inter-service connectivity.

Platforms such as Linkerd (v2) and Istio (v1) provide offload for µ--services

@mjbright 62 / 74

Design Pattern - Service Mesh
Abstraction above TCP/IP, secure reliable inter-service connectivity.

Platforms such as Linkerd (v2) and Istio (v1) provide offload for µ--services

Offloads functionality from services in a distributed way.

@mjbright 62 / 74

Design Pattern - Service Mesh
Abstraction above TCP/IP, secure reliable inter-service connectivity.

Platforms such as Linkerd (v2) and Istio (v1) provide offload for µ--services

Offloads functionality from services in a distributed way.

@mjbright 62 / 74

Design Pattern - Service Mesh
Abstraction above TCP/IP, secure reliable inter-service connectivity.

Platforms such as Linkerd (v2) and Istio (v1) provide offload for µ--services

Offloads functionality from services in a distributed way.

@mjbright 62 / 74

Design Pattern - Service Mesh
Abstraction above TCP/IP, secure reliable inter-service connectivity.

Platforms such as Linkerd (v2) and Istio (v1) provide offload for µ--services

Offloads functionality from services in a distributed way.

@mjbright 62 / 74

Hybrid Apps - API Gateway Pattern
Problem: But wouldn't it be better if we could mix legacy and new paradigms

The Strangler pattern is an option but requires being able to rebuild the
original monolith to extract functionality.

It would be useful to be able to add new functionality in a less invasive way.

@mjbright 63 / 74

Hybrid Apps - API Gateway Pattern
There is a "API Gateway" pattern whereby the gateway has the ability to
understand the API protocols.

It may also understand the underlying Infrastructure and Platform APIs.

This allows to perform API translation and routing and really take advantage
of the orchestration platforms.

 "Microservices Patterns Book

@mjbright 64 / 74

http://chrisrichardson.net/learnmicroservices.html

Hybrid Apps - API Gateway Pattern
Gloo allows to route between legacy apps, micro-services and serverless
incrementally adding new functionality.

https://medium.com/solo-io/building-hybrid-apps-with-gloo-1eb96579b070

@mjbright 65 / 74

https://medium.com/solo-io/building-hybrid-apps-with-gloo-1eb96579b070

Hybrid Apps - API Gateway Pattern
Gloo understands the infrastructure on which it is running and the APIs being
used.

Gloo is one of several open source projects from Solo.io to facilitate the
adoption of modern paradigms such as Micro-services

Gloo: API Gateway
Sqoop: Tool for modelling API interactions
Squash: Micro-service debugging tool

@mjbright 66 / 74

https://www.solo.io/

Hybrid Apps - API Gateway Pattern
Gloo understands the infrastructure on which it is running and the APIs being
used.

Gloo is one of several open source projects from Solo.io to facilitate the
adoption of modern paradigms such as Micro-services

Gloo: API Gateway
Sqoop: Tool for modelling API interactions
Squash: Micro-service debugging tool

@mjbright 66 / 74

https://www.solo.io/

So API Gateways or Service Mesh ?
Service Mesh and API Gateways provide similar functionality

Service Mesh control mainly E-W traffic between micro-services
API Gateway control N-S (Ingress) traffic

@mjbright 67 / 74

So API Gateways or Service Mesh ?
Service Mesh and API Gateways provide similar functionality

Service Mesh control mainly E-W traffic between micro-services
API Gateway control N-S (Ingress) traffic

Service Mesh technology is quickly advancing

May be overkill for some use cases

Istio now includes basic Gateway (N-S) functionality

Service Mesh Vendors say we still need API Gateways for the moment.

Linkerd just received new VC funding

@mjbright 67 / 74

So API Gateways or Service Mesh ?
Service Mesh and API Gateways provide similar functionality

Service Mesh control mainly E-W traffic between micro-services
API Gateway control N-S (Ingress) traffic

Service Mesh technology is quickly advancing

May be overkill for some use cases

Istio now includes basic Gateway (N-S) functionality

Service Mesh Vendors say we still need API Gateways for the moment.

Linkerd just received new VC funding

But, API Gateways will continue to offer advanced functionality for Ingress
control.

@mjbright 67 / 74

So API Gateways or Service Mesh ?
Service Mesh and API Gateways provide similar functionality

Service Mesh control mainly E-W traffic between micro-services
API Gateway control N-S (Ingress) traffic

Service Mesh technology is quickly advancing

May be overkill for some use cases

Istio now includes basic Gateway (N-S) functionality

Service Mesh Vendors say we still need API Gateways for the moment.

Linkerd just received new VC funding

But, API Gateways will continue to offer advanced functionality for Ingress
control.

Going forward we can expect to see Service Mesh incorporating more and
more Gateway functionality

@mjbright 67 / 74

Outline
[Why?] Monoliths to Micro-services

Orchestration: Kubernetes

Deployment Strategies

Architecture Design patterns

Summary

@mjbright 68 / 74

Summary
Micro-services offer new deployment

possibilities

- with ease of deployment, scaling, upgrading

- facilitate "Best in Class" technology choices/replacements

@mjbright 69 / 74

Summary
Micro-services offer new deployment

possibilities

- with ease of deployment, scaling, upgrading

- facilitate "Best in Class" technology choices/replacements

BUT moving to µ-services requires

- organizational changes and best practices !

- incremental rollout - small steps / Strangler

- hybrid approaches - old/new, cloud/on-premise, VM/container/µ-service

- o�oad via API Gateway and/or Service Mesh
@mjbright 69 / 74

Thank you !
From Monologue to Discussions ... ?

Questions ?

Michael Bright, @mjbright

Cloud Native Training (Docker, Kubernetes, Serverless)

 linkedin.com/in/mjbright github.com/mjbright

Slides & source code at https://mjbright.github.io/Talks 70 / 74

https://mjbright.github.io/Talks

Summary
Getting started with Kubernetes
Start by learning Docker principles

Experiment by Dockerizing some applications

Learn about Container Orchestration

Hands-on with Kubernetes online or
Minikube(*)

Kubernetes Visualization with KubeView

https://github.com/mjbright/kubeview

@mjbright 71 / 74

https://github.com/mjbright/kubeview

Resources

Download https://github.com/kubernetes/minikube/releases
Documentation https://kubernetes.io/docs/getting-started-guides/minikube/

Hello Minikube
https://kubernetes.io/docs/tutorials/stateless-
application/hello-minikube/

@mjbrightSlides & source code at https://mjbright.github.io/Talks 72 / 74

https://github.com/kubernetes/minikube/releases
https://kubernetes.io/docs/getting-started-guides/minikube/
https://kubernetes.io/docs/tutorials/stateless-application/hello-minikube/
https://mjbright.github.io/Talks

Resources - Articles
Martin Fowler https://martinfowler.com/articles/microservices.html
MuleSoft, "The top 6
Microservices Patterns"

https://www.mulesoft.com/lp/whitepaper/api/top-
microservices-patterns

FullStack Python https://www.fullstackpython.com/microservices.html

Idit Levine
https://medium.com/solo-io/building-hybrid-apps-
with-gloo-1eb96579b070

SSola
https://medium.com/@ssola/building-microservices-
with-python-part-i-5240a8dcc2fb

Deployment
http://container-solutions.com/kubernetes-
deployment-strategies/

@mjbrightSlides & source code at https://mjbright.github.io/Talks 73 / 74

https://martinfowler.com/articles/microservices.html
https://www.mulesoft.com/lp/whitepaper/api/top-microservices-patterns
https://www.fullstackpython.com/microservices.html
https://medium.com/solo-io/building-hybrid-apps-with-gloo-1eb96579b070
https://medium.com/@ssola/building-microservices-with-python-part-i-5240a8dcc2fb
http://container-solutions.com/kubernetes-deployment-strategies/
https://mjbright.github.io/Talks

Resources - Books
Publisher Title, Author

O'Reilly
"Building Microservices", Sam Newman,
July 2015

PacktPub
"Python Microservices Development",
Tarek Ziade, July 2017

kNative - O'Reilly

Istio - Manning

Istio - O'Reilly

Testdriven.io

@mjbrightSlides & source code at https://mjbright.github.io/Talks 74 / 74

https://ziade.org/2017/07/26/python-microservices-development/
https://mjbright.github.io/Talks

