
Unikernels in Action
28 January 2018, DevConf.cz, Brno

Michael Bright, Developer Evangelist @

Slides online @ https://mjbright.github.io/Talks/2018-Jan-28_Devconf.cz_Unikernels

@mjbright

1 / 31

https://mjbright.github.io/Talks/2018-Jan-28_Devconf.cz_Unikernels

Agenda
What are Unikernels ?

What they are not.
Advantages / Characteristics
Application domains
Implementations & Tools

IncludeOS demo

What can we expect to see in 2018?

@mjbright

2 / 31

What are Unikernels?
“Unikernels are specialized, single-address-space machine

images constructed by using library operating systems”
“What are Unikernels”, unikernel.org

@mjbright

3 / 31

What are Unikernels?
“Unikernels are specialized, single-address-space machine

images constructed by using library operating systems”
“What are Unikernels”, unikernel.org

“VMs aren't heavy, OSes are"
Alfred Bratterud, #IncludeOS

@mjbright

4 / 31

What are Unikernels? - They are "Library OS"
Specialized applications
built with only the "OS"
components they need.

A Unikernel image runs
directly as a VM

(or on bare metal?)

"OS" components such
as Network stack, File-
system, Device drivers

are optional

Typically, there is no
filesystem.

Configuration is stored
in the unikernel

application binary

@mjbright

5 / 31

Unikernels: What they are not ... General Purpose
OS kernels with unneeded features e.g. floppy drivers, designed to run any
software on any hardware are huge - lines of code

Unikernels are not "top-down" minified versions of General Purpose OSes ...
@mjbright

6 / 31

Unikernels: Are ...
Very small compared to an application + OS

use few resources - allows high density
immutable, suitable for micro-services
No legacy drivers
No unneeded shell - did I mention this?

Have no separate kernel space

No need to copy between kernel and user space

@mjbright

7 / 31

Unikernels: Are ...
Very small compared to an application + OS

use few resources - allows high density
immutable, suitable for micro-services
No legacy drivers
No unneeded shell - did I mention this?

Have no separate kernel space

No need to copy between kernel and user space

More secure

small attack surface
If compromised, the attacker can’t do much - no shell, users, processes ...

@mjbright

8 / 31

Unikernels: Are ...
Very small compared to an application + OS

use few resources - allows high density
immutable, suitable for micro-services
No legacy drivers
No unneeded shell - did I mention this?

Have no separate kernel space

No need to copy between kernel and user space

More secure

small attack surface
If compromised, the attacker can’t do much - no shell, users, processes ...

Fast to boot

Possibility of on demand services

@mjbright

9 / 31

Unikernels: Are ...
Very small compared to an application + OS

use few resources - allows high density
immutable, suitable for micro-services
No legacy drivers
No unneeded shell - did I mention this?

Have no separate kernel space

No need to copy between kernel and user space

More secure

small attack surface
If compromised, the attacker can’t do much - no shell, users, processes ...

Fast to boot

Possibility of on demand services

More difficult to develop

 libraries, languages, debugging limitations@mjbright

10 / 31

Unikernels: Application Domains

Cloud Computing and NFV
Fast to boot: On demand services
Secure immutable images

@mjbright

11 / 31

Unikernels: Application Domains

Cloud Computing and NFV
Fast to boot: On demand services
Secure immutable images

IoT / Embedded
Small images for OTA updates
Secure immutable images

@mjbright

12 / 31

Unikernels: Application Domains

Cloud Computing and NFV
Fast to boot: On demand services
Secure immutable images

IoT / Embedded
Small images for OTA updates
Secure immutable images

HPC
Secure in the cloud
Very efficient (no context switches, just 1 process)

@mjbright

13 / 31

IETF draft on Containers for NFV expired Jan 2017
Taken from: draft-natarajan-nfvrg-containers-for-nfv-03.txt , Slides

4.2. Instantiation Times

Measurement of time to boot image, up to the 1st RST packet (to a SYN flood).

 |--------------------------------------+
 | Technology Type | Time (msecs) |
 |--------------------------------------+
 | standardvm.xen | 6500 |
 | standardvm.kvm | 2988 |
 | Container | 1711 |
 | tinyx.kvm | 1081 |
 | tinyx.xen | 431 |
 | unikernel.osv.kvm | 330 |
 | unikernels.minios.xen |** 31 **|
 +-----------------------+--------------+

Note:

These unikernels include just one application - iperf.
Tinyx is "Tinyfied Linux" running 4.4.1 kernel - busybox+sshd+iperf
Standard VM is Debian running 4.4.1 kernel + iperf
Docker container including iperf

14 / 31

https://www.ietf.org/archive/id/draft-natarajan-nfvrg-containers-for-nfv-03.txt
https://datatracker.ietf.org/meeting/96/materials/slides-96-nfvrg-3/

IETF draft on Containers for NFV expired Jan 2017
4.3. Throughput

TCP/IP throughput was measured using iperf from guest to host (to avoid
physical medium limitations)

 |---+
 | Technology | Throughput (Gb/s) | Throughput (Gb/s) |
 | Type | Tx | Rx |
 |-----------------------+-------------------+-------------------+
 | standardvm.xen | 23.1 | 24.5 |
 | standardvm.kvm | 20.1 | 38.9 |
 | Container | 45.1 | 43.8 |
 | tinyx.kvm | 21.5 | 37.9 |
 | tinyx.xen | 28.6 | 24.9 |
 | unikernel.osv.kvm |** 47.9 **|** 47.7 **|
 | unikernels.minios.xen |** 49.5 **| 32.6 |
 +-----------------------+-------------------+-------------------+

Note:

Throughput depends not just on guest efficiency
Xen is optimized for Tx but not Rx (similar to ClickOS experience)

15 / 31

IETF draft on Containers for NFV expired Jan 2017
4.4. RTT

Average round-trip time (RTT) measured from an external server using a ping
flood.

 +-----------------------+--------------+
 | Technology Type | Time (msecs) |
 |--------------------------------------+
 | standardvm.xen | 34 |
 | standardvm.kvm | 18 |
 | Container |** 4 **|
 | tinyx.kvm | 19 |
 | tinyx.xen | 15 |
 | unikernel.osv.kvm | 9 |
 | unikernels.minios.xen |** 5 **|
 +-----------------------+--------------+

16 / 31

IETF draft on Containers for NFV expired Jan 2017
4.5. Image Size

We measure image size using the standard "ls" tool.

 +-----------------------+------------+
 | Technology Type | Size (MBs) |
 |------------------------------------+
 | standardvm.xen | 913 |
 | standardvm.kvm | 913 |
 | Container | 61 |
 | tinyx.kvm | 3.5 |
 | tinyx.xen | 3.7 |
 | unikernel.osv.kvm | 12 |
 | unikernels.minios.xen |** 2 **|
 +-----------------------+------------+

17 / 31

IETF draft on Containers for NFV expired Jan 2017
4.6. Memory Usage

"top" and "xl" (on Xen) used to measure memory usage:

 +-----------------------+-------------+
 | Technology Type | Usage (MBs) |
 |-------------------------------------+
 | standardvm.xen | 112 |
 | standardvm.kvm | 82 |
 | Container |** 3.8 **|
 | tinyx.kvm | 30 |
 | tinyx.xen | 31 |
 | unikernel.osv.kvm | 52 |
 | unikernels.minios.xen | 8 |
 +-----------------------+-------------+

Note:

OSv pre-allocates memory, e.g for buffers
Best result is Docker as it has no OS function

18 / 31

Unikernel implementations

@mjbright

19 / 31

Unikernel Implementations: 2 families

Clean-Slate Legacy
- Minimalist approach - POSIX compatibility
- Re-implement needed OS functions - Re-use existing libraries
- Typically uses type safe language - Possible binary compatibility
- Very small code size, resources - Small to large code size/resources
- Harder to develop apps - Easier to develop apps

20 / 31

Unikernel Implementations: 2 families

Clean-Slate Legacy
- Minimalist approach - POSIX compatibility
- Re-implement needed OS functions - Re-use existing libraries
- Typically uses type safe language - Possible binary compatibility
- Very small code size, resources - Small to large code size/resources
- Harder to develop apps - Easier to develop apps

21 / 31

Unikernel Implementations: 2 families

Clean-Slate Legacy
- Minimalist approach - POSIX compatibility
- Re-implement needed OS functions - Re-use existing libraries
- Typically uses type safe language - Possible binary compatibility
- Very small code size, resources - Small to large code size/resources
- Harder to develop apps - Easier to develop apps

We can see that Legacy Unikernels trade off some principles for ease of use ...

22 / 31

Unikernel Implementations:

Clean-Slate Legacy
MirageOS (Ocaml) OSv
HalVM (Haskell) Rumprun (+LKL)
LING (Erlang) .red[Runtime.js]
IncludeOS (C/C++) HermitCore

Graphene
ClickOS
Vorteil

Tools Clive
Solo5/ukvm Magnios
Unik Ultibo
Unikraft Drawbridge
Minios ... others ? ...

@mjbright 10

23 / 31

includeos.org

Clean Slate

Open Source

Backing
(IncludeOS)

C/C++

includeos.
readthedoc.io

CppCon 2017

Open source Unikernels written in C++ - #include <os>

Runs on hypervisors (KVM, VMWare) maybe baremetal
(E1000 support recently added) ...

Many features such as multi-threading, multi-cores can be
compiled in (experimental today). Single-memory space.

Delegates to route messages between TCP/IP stack
components.

No blocking POSIX calls implemented yet, only async i/o.

Recent developments:

Currently integrating MUSL musl-libc.org
Dashboard available as commercial product
NaCl DSL to define network configurations

allows to build firewalls, routers, load-balancers
Added Solo5 (ukvm) support
Became 64-bit
Added ARM support
Worked with Mender (mender.io) for OTA updates

Unikernel Implementations: IncludeOS

@mjbright

24 / 31

http://www.includeos.org/
http://includeos.readthedocs.io/
https://www.youtube.com/watch?v=h7D88U-5pKc
https://www.musl-libc.org/

Demo
IncludeOS

building IncludeOS unikernels

Native (could use Docker images)

deploying IncludeOS on OpenStack (KVM)

Past demos include:

deferpanic.net with rumpkernel/Python + remark.js slideset
runtimejs under qemu
MirageOS linux build/run, ukvm run, GCE run
OSv/capstan tomcat

@mjbright 30

25 / 31

What can we expect to see in 2018?
More trials of specialized applications, e.g. networking components.

Unikernels becoming easier to use/deploy/debug

Solo5: More backend support
Unik as common unikernel compiler
Unikraft as a tool for building Unikernels
More Unikernel support from PaaS (kubernetes+virtlet)

IncludeOS

Becomes production ready, trial deployments
More capabilities around multi-thread, multi-core
Limited bare-metal support
More languages?

Docker / MirageOS ?

MirageOS to support ReactML ?
Progress on MirageSDK (part of LinuxKit)

@mjbright

26 / 31

Q&A

@mjbright

27 / 31

Resources

@mjbright

28 / 31

Resources - General
URL

.
Unikernel.org site

Wikipedia Wiki
.

Scoop.It Unikernels
Playlist YouTube Unikernels

@mjbright

29 / 31

http://unikernel.org/
https://en.wikipedia.org/wiki/Unikernel
http://www.scoop.it/t/unikernels/
https://www.youtube.com/playlist?list=PLCDlZzVd_jn8heLw_Q10gOaEflLZKyf81

Resources - Unikernel Implementations
Technology Backers URL

.
MirageOS Xen mirage.io

HalVM Galois galois.com/project/halvm
LING erlangonxen.org

.
IncludeOS IncludeOS includeos.org
Rumprun NetBSD rumpkernel.org

OSv Cloudius osv.io
HermitCore Univ. Aachen hermitcore.org

.
Unik CloudFoundry github.com/cf-unik/unik
Solo5 IBM github.com/Solo5/solo5
Ukvm IBM github.com/Solo5/solo5/tree/master/ukvm

@mjbright

30 / 31

http://mirage.io/
https://galois.com/project/halvm/
http://erlangonxen.org/
http://www.includeos.org/
http://rumpkernel.org/
http://osv.io/
http://www.hermitcore.org/
https://github.com/cf-unik/unik
https://github.com/Solo5/solo5
https://github.com/Solo5/solo5/tree/master/ukvm

Resources - Unikernel Implementations (2)
Technology Backers URL

.
Ultibo (Raspi)

Clive (Go)
Magnios
ClickOS NEC

.
Drawbridge Microsoft project/drawbridge

.
DeferPanic DeferPanic deferpanic.net

@mjbright

31 / 31

https://www.microsoft.com/en-us/research/project/drawbridge/
http://www.deferpanic.net/

