Developing Micro-services with Kubernetes
24 April 2018, CodeEurope.pl

== CODE
== FUROPE

Slides & source code at https://mjbright.github.io/Talks

https://mjbright.github.io/Talks

Michael Bright, ¥ @mijbrigh
Cloud Native Solution Architect

Trainer: Kubernetes, Serverless, Docker, CloudNative
Past researcher, dev, team lead, dev advocate
British, living in France for 25-years

Docker Community Lead, Python User Group

D linkedin com/in/mibriaht ® aithub.com/mibriaht

Outline

e Monoliths to Micro-services

e Micro-service design patterns
e Kubernetes

e Operations

e Demo

e TOOIs

@mjbright 3/56

Outline

e Monoliths to Micro-services
e Micro-service design patterns
e Kubernetes
e Operations
e Demo

e TOOIs

@mjbright 456

First ... a bit of history

Monolithic N-tier Micro-services Nano-services
apps

funcf) {

return 200;

Baremetal Virtual Cloud: Containers: Serverless:
Servers Machines laaS, Paas, Saas ... LXC, Docker, rkt AWS Lambda

Toward smaller, faster, cheaper solutions with easier management enabling faster time to market

v@mjbright 5/56

First ... a bit of history

Monolithic N-tier Micro-services Nano-services
apps

* — ‘\
p
fung(){
return 200;
VM
S
Baremetal Virtual Cloud: Containers: Serverless:
Servers Machines laaS, Paas, Saas ... LXC, Docker, rkt AWS Lambda

Toward smaller, faster, cheaper solutions with easier management enabling faster time to market

Note: But the future is hybrid ...

v@mjbright 5/56

Monoliths to Micro-services

Monoliths are deployed, scaled, upgraded, reimplemented as complete
units

0 Ee - EO

Individual py-service components can be deployed, scaled, upgraded,
reimplemented ...

@mjbright 6/56

Advantages of Micro-services

Separation of Concerns - "do one thing well"

@mjbright 7/56

Advantages of Micro-services

Separation of Concerns - "do one thing well"

Smaller Projects/teams

@mjbright 7/56

Advantages of Micro-services

Separation of Concerns - "do one thing well"

Smaller Projects/teams

Ease Scaling, Deployment, Testing, Evolution

@mjbright 7/56

Advantages of Micro-services

Separation of Concerns - "do one thing well"
Smaller Projects/teams
Ease Scaling, Deployment, Testing, Evolution

Loosely coupled components

@mjbright 7/56

Advantages of Micro-services

Separation of Concerns - "do one thing well"
Smaller Projects/teams

Ease Scaling, Deployment, Testing, Evolution
Loosely coupled components

Allow for composition of new services

@mjbright

Advantages of Micro-services

Separation of Concerns - "do one thing well"
Smaller Projects/teams

Ease Scaling, Deployment, Testing, Evolution
Loosely coupled components

Allow for composition of new services

So are they a panacea?

@mjbright

Disadvantages

Greater complexity

* Requires more orchestration
» Greater organizational complexity
e Monitoring, debugging is more difficult

@mjbright

8/56

Disadvantages

Greater complexity

* Requires more orchestration
» Greater organizational complexity
e Monitoring, debugging is more difficult

More network communication

e Network error handling
» Performance

@mjbright

8/56

Disadvantages

Greater complexity

* Requires more orchestration
» Greater organizational complexity
e Monitoring, debugging is more difficult

More network communication

e Network error handling
» Performance

Still requires best practices

Behaviour and Test-Driven Development
CI/CD

Documentation of interfaces/APIs

Stable interfaces/APIs

@mjbright

8/56

Outline

e Monoliths to Micro-services
e Micro-service design patterns

e Kubernetes

e Operations

e Demo

e TOOIs

@mjbright 9/56

Architecture Design Patterns

Standard Component Patterns

@mjbright 10/56

Architecture Design Patterns

Standard Component Patterns

Fine-grained SOA - Micro-services(!)

@mjbright 10/56

Architecture Design Patterns

Standard Component Patterns
Fine-grained SOA - Micro-services(!)

Strangler

@mjbright 10/56

Architecture Design Patterns

Standard Component Patterns
Fine-grained SOA - Micro-services(!)
Strangler

APl Gateway

@mjbright 10/56

Architecture Design Patterns

Standard Component Patterns
Fine-grained SOA - Micro-services(!)
Strangler

APl Gateway

Service Mesh

@mjbright 10/56

Architecture Design Patterns

Standard Component Patterns
Fine-grained SOA - Micro-services(!)
Strangler

APl Gateway

Service Mesh

Hybrid Apps

@mjbright 10/56

Design Pattern - APl Gateway

Exposes internal APIs via single external entry
point.

e Offload common functions
o rate limiting, security, authorisation
o protection against DDoS
o reduces y-service complexity

@mjbright 11/56

Design Pattern - APl Gateway

Exposes internal APIs via single external entry
point.

e Offload common functions
o rate limiting, security, authorisation
o protection against DDoS
o reduces y-service complexity

e Hides internal infrastructure detail
o service routing, load-balancing

@mjbright 11/56

Design Pattern - APl Gateway

Exposes internal APIs via single external entry
point.

e Offload common functions
o rate limiting, security, authorisation
o protection against DDoS
o reduces y-service complexity

« Hides internal infrastructure detail
o service routing, load-balancing

« Prevents general access to internal infrastructure

@mjbright 11/56

Design Pattern - APl Gateway

Exposes internal APIs via single external entry
point.

e Offload common functions
o rate limiting, security, authorisation
o protection against DDoS
o reduces y-service complexity

« Hides internal infrastructure detail
o service routing, load-balancing
« Prevents general access to internal infrastructure

« Allows to refactor/scale/mock internal implementation

@mjbright 11/56

Design Pattern - APl Gateway

Exposes internal APIs via single external entry
point.

e Offload common functions
o rate limiting, security, authorisation
o protection against DDoS
o reduces y-service complexity

Hides internal infrastructure detail

o service routing, load-balancing

Prevents general access to internal infrastructure

Allows to refactor/scale/mock internal implementation

@mjbright

Protocol version translation, e.g. REST/https to REST or SOAP/http, *-RPC ...

11/56

Design Pattern - APl Gateway

Exposes internal APIs via single external entry
point.

e Offload common functions
o rate limiting, security, authorisation
o protection against DDoS
o reduces y-service complexity

Hides internal infrastructure detail

o service routing, load-balancing

Prevents general access to internal infrastructure

Allows to refactor/scale/mock internal implementation

Needs to scale, be H.A.

@mjbright

Protocol version translation, e.g. REST/https to REST or SOAP/http, *-RPC ...

11/56

Design Pattern - APl Gateway

API Gateway

N\

https://api.com/....

Service 1
(REST/http)

Service2
(JSON-RPC)

Service3
(WAMP)

@mjbright

12 /56

Design Pattern - Service Mesh

Abstraction above TCP/IP, secure reliable inter-service connectivity.

@mjbright 13/56

Design Pattern - Service Mesh

Abstraction above TCP/IP, secure reliable inter-service connectivity.

Offloads functionality from services in a distributed way.

@mjbright 13/56

Design Pattern - Service Mesh

Abstraction above TCP/IP, secure reliable inter-service connectivity.

Offloads functionality from services in a distributed way.

Linkerd instances form a service mesh, allowing application code to communicate reliably.
host/pod 1 host/pod 2 host/pod 3
Service A Service B Service C

application calls
w——— service mesh calls

............

: . service
service discovery lookup (cached) discovery

v@mjbright

13/56

Design Pattern - Hybrid Apps

Gloo allows to route between legacy apps, micro-services and serverless
incrementally adding new functionality.

MonolithicAppsH Microservices 4 Serverless

Kubernetes

Promethi i . Cloudwa .
microservices Event-driven

Es

https://medium.com/solo-io/building-hybrid-apps-with-gloo-1eb96579b070

@mjbright 14 /56

https://medium.com/solo-io/building-hybrid-apps-with-gloo-1eb96579b070

Outline

e Monoliths to Micro-services

e Micro-service design patterns
e Kubernetes

e Operations

e Demo

e TOOIs

@mjbright 15/56

Kubernetes - Architecture

/

Master Node

-

N

Worker
Node 1

Worker
Node 2

Worker
Node 3

@mjbright 17/56

Kubernetes - Master Nodes

GUI
(dashboard)

CLI
(kubectl)

\ etcd
W\laster @
Master @ |
Master L 2
AP > API Scheduler | |[Controller
Server

v@mjbright

18 /56

Kubernetes - Worker Nodes

A

Kubelet

v@mjbright 19/56

Kubernetes - Pods

Containers share some namespaces:
- PID, IPC, network , time sharing

Main container Sidecar

i I N

same ip, e.g. 192.168.1.20

A pod houses one or more containers

@mjbright 20/56

Kubernetes Demo

Ingress

Load Balancer
|

Master Node

Minikube single-node "tainted"

@mjbright

Kubernetes - Deploying Redis

kubectl create -f redis-deployment.yaml

» deployment

/

ReplicaSet

pd

Pod1
2e76: redis

@mjbright

22 /56

Kubernetes - Deploying Redis

kubectl run redis --image=redis:latest --port=6379

S kubectl apply -f redis-deployment.yaml
deployment.extensions "redis" created

S kubectl get pods

NAME READY STATUS RESTARTS AGE
redis-68595c4d95-rrdpr 0/1 ContainerCreating 0 1s

@mjbright 23/56

Kubernetes - Deploying Redis (yaml)

apiVersion: extensions/vibetal
kind: Deployment
metadata:
labels:
run: redis
name: redis
spec:
replicas: 1
selector:
matchLabels:
run: redis
template:
metadata:
labels:
run: redis
spec:
containers:
- image: redis:latest
name: redis
ports:
- containerPort: 6379

@mjbright

24 /56

Kubernetes - Deploying Flask

kubectl create -f flask-deployment.yaml _» deployment

/

ReplicaSet

RN

Pod1 Pod2
2e76: flask:v1 1f3d: flask:v1

@mjbright 25/56

Kubernetes - Deploying Flask

kubectl run flask-app --image=$IMAGE --port=5000

$ kubectl apply -f flask-deployment.yaml
deployment.extensions "flask-app" created

$ kubectl get pods

NAME READY STATUS
flask-app-8577b44db-96cht 0/1 Pending
redis-68595c4d95-rr4pr 0/1 ContainerCreating

RESTARTS
0
0

AGE
1s
1s

@mjbright

26 /56

Kubernetes - Deploying Flask (yaml)

apiVersion: extensions/vibetal
kind: Deployment
metadata:
labels:
run: flask-app
name: flask-app
spec:
replicas: 1
selector:
matchLabels:
run: flask-app
template:
metadata:

labels:
run: flask-app

spec:

containers:

- image: mjbright/flask-web:v1
name: flask-app
ports:

- containerPort: 5000

@mjbright 27/56

Kubernetes - Exposing Services

Master . User
—— IT;F;;F?‘ /
I_Serwc:e 1
,z’___-<\
Worker Worker
pod pod
pod pod

@mjbright 28/56

Exposing Services (LoadBalancer)

Master User
S_GR/EE -i"_ _: :II;f.OEt:’E)O(ta.e(';nBaal.|ancer
/""‘<1\ """"""""""""""
Worker Worker
pod pod
pod pod

@mjbright 29/56

Exposing Services (NodePort)

Master
___"
rService_!
27N\ s
flP:poFt‘) VIP:port's
Worke.--1'| WorKea---
‘pod pod
pod pod

7’

Y4

User

User connects
to IP/port of one

of the Nodes

@mjbright 30/56

Exposing Services (IngressController)

Master
'__:—F===:———————————..4/
l_._\ogte_ _: _Iﬂ_g Le-SlS____E

| Service 1
(,/’ <*
Worker Worker
pod pod
pod pod

User

@mjbright 31 /56

Exposing Redis Service (LoadBalancer)

kubectl expose deployment redis --type=LoadBalancer

$ kubectl apply -f redis-service.yaml
service "redis" created

$ kubectl get svc

NAME TYPE CLUSTER-1IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443 /TCP 5h
redis LoadBalancer 10.101.158.201 <pending> 6379:31218/TCP 1s

@mjbright

32 /56

Exposing Redis Service (LoadBalancer)

apiVersion: vi1
kind: Service
metadata:

labels:
run: redis

name: redis

spec:

ports:

- port: 6379
protocol: TCP
targetPort: 6379

selector:
run: redis

type: LoadBalancer

@mjbright 33 /56

Exposing Flask Service (LoadBalancer)

kubectl expose deployment flask-app --type=LoadBalancer

$ kubectl apply -f flask-service.yaml
service "flask-app" created

$ kubectl get svc

NAME TYPE CLUSTER-1IP EXTERNAL-IP PORT(S) AGE
flask-app LoadBalancer 10.103.154.19 <pending> 5000:32201/TCP 1s
kubernetes ClusterIP 10.96.0.1 <none> 443 /TCP 5h
redis LoadBalancer 10.101.158.201 <pending> 6379:31218/TCP 2s

@mjbright 34 /56

Exposing Flask Service (LoadBalancer)

apiVersion: vi1
kind: Service
metadata:

labels:
run: flask-app

name: flask-app

spec:

ports:

- port: 5000
protocol: TCP
targetPort: 5000

selector:
run: flask-app

type: LoadBalancer

@mjbright 35/56

Exposing Services (Ingress)

$ minikube addons enable ingress
ingress was successfully enabled

$ kubectl apply -f misc/ingress-definition.yaml
ingress.extensions "ingress-definitions" created

$ sudo vi /etc/hosts

192.168.99.100 minikube.test flaskapp.test

@mjbright 36/56

Exposing Services (Ingress

apiVersion: extensions/vibetal
kind: Ingress
metadata:
name: ingress-definitions
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
backend:
serviceName: default-http-backend
servicePort: 80
rules:
- host: minikube.test
http:
paths:
- path: /
backend:
serviceName: k8sdemo
servicePort: 8080
- host: flaskapp.test

http:
paths:
- path: /flask
backend:

serviceName: flask-app
servicePort: 5000

@mjbright

37 /56

Exposing Services (Ingress)

S minikube service list

default flask-app http://192.168.99.100:32201

I

I I

I I
I I I I
default	k8sdemo	http://192.168.99.100:31280
default	redis	http://192.168.99.100:31218
kube-system	kubernetes-dashboard	http://192.168.99.100:30000

I I
$ curl http://192.168.99.100:31280

$ curl http://minikube.test/k8sdemo

@mjbright 38/56

Exposing Services (Ingress)

S minikube service list

I

| |

| default | flask-app | http://192.168.99.100:32201 |

| default | k8sdemo | http://192.168.99.100:31280 |

| default | redis | http://192.168.99.100:31218 |

| kube-system | kubernetes-dashboard | http://192.168.99.100:30000 |
I I

$ curl http://192.168.99.100:32201
[flask-app-8577b44db-kbwpn] Redis counter value=214

$ curl http://flaskapp.test/flask
[flask-app-8577b44db-kbwpn] Redis counter value=215

@mjbright 39/56

Outline

e Monoliths to Micro-services
e Micro-service design patterns
e Kubernetes
e Operations
e Demo

e TOOIs

@mjbright 40/56

Operations

H.A.

Scaling

Rolling Upgrade
Strategies
Health Checks

@mjbright 41 /56

Operations - achieving High Availability

Achieved through running multiple instances across multiple nodes of the
data center

 resilience to node outages

 resilience to pod outages or poor response times

@mjbright 42 /56

Operations - Scaling

kubectl scale deploy flask-app --replicas=4

$ kubectl edit -f flask-deploy.yaml

spec:
replicas: 4

@mjbright 43 /56

Operations - Rolling Upgrades

Several strategies exist

recreate - terminate old version before releasing new one

@mjbright 44 /56

Operations - Rolling Upgrades

Several strategies exist
recreate - terminate old version before releasing new one

ram ped - gradually release a new version on a rolling update fashion

@mjbright 44 /56

Operations - Rolling Upgrades

Several strategies exist
recreate - terminate old version before releasing new one
ram ped - gradually release a new version on a rolling update fashion

blue/ green - release new version alongside old version then switch

@mjbright 44 /56

Operations - Rolling Upgrades

Several strategies exist

recreate - terminate old version before releasing new one
ram ped - gradually release a new version on a rolling update fashion
blue/ green - release new version alongside old version then switch

Canary - release new version to subset of users, proceed to full rollout

@mjbright 44 /56

Operations - Rolling Upgrades

Several strategies exist

recreate - terminate old version before releasing new one

ram ped - gradually release a new version on a rolling update fashion
blue/ green - release new version alongside old version then switch
Canary - release new version to subset of users, proceed to full rollout

a/ b testl ng - release new version to subset of users in a precise way
(HTTP headers, cookie, weight, etc.).

@mjbright 44 /56

Operations - Rolling Upgrade

Ramped

kubectl set image deploy flask-app flask-app=mjbright/flask-web:v2

$ kubectl edit -f flask-deploy.yaml
$ kubectl rollout status deployment/flask-app

spec:
containers:
- image: mjbright/flask-web:v2

@mjbright 45/56

Outline

e Monoliths to Micro-services
e Micro-service design patterns
e Kubernetes
e Operations
e Demo

e TOOIs

@mjbright 46 /56

Demo

Ingress

Load Balancer
/ \

Flask?2

Master Node

Minikube single-node "tainted"

@mjbright

Outline

e Monoliths to Micro-services

e Micro-service design patterns
e Kubernetes

e Operations

e Demo

e TOOls

@mjbright 48 /56

Tools

e Tools

o Helm (use to install tools)

o Prometheus

o Squash

o Gloo

o Istio / Service Meshes / Envoy

M
HELM

~A

v@mjbright 49/56

Summary

Getting started with Micro-services

@mjbright

Summary

Getting started with Micro-services

If migrating monolith, take small steps

@mjbright

Summary

Getting started with Micro-services

If migrating monolith, take small steps

Secure your services behind firewall/API

@mjbright

Summary

Getting started with Micro-services

If migrating monolith, take small steps

Secure your services behind firewall/API

Services must use public APlIs onl

@mjbright

Summary

Getting started with Micro-services

If migrating monolith, take small steps

Secure your services behind firewall/APl gw

Services must use public APlIs onl

Choose "best" technology for each component

@mjbright

Summary

Getting started with Micro-services
monolith, take small steps

Secure your services behind firewall/APl gw

Services must use public APlIs onl

Choose "best" technology for each component

Transform technology and your organization

@mjbright

Summary

Getting started with Micro-services

monolith, take small steps

Secure your services behind firewall/APl gw

Services must use public APlIs onl

Choose "best" technology for each component

Transform technology and your organization

Automate, automate, automate ...

@mjbright

Summary
Getting started with Kubernetes

@mjbright

Summary
Getting started with Kubernetes

Start by learning Docker

@mjbright

Summary
Getting started with Kubernetes

Start by learning Docker principles

Experiment by Dockerizing some applications

@mjbright

Summary
Getting started with Kubernetes

Start by learning Docker principles

Experiment by Dockerizing some applications

Learn about Container Orchestration

@mjbright

Summary
Getting started with Kubernetes

Start by learning Docker principles

Experiment by Dockerizing some applications

Learn about Container Orchestration

Hands-on with Kubernetes online or Minikube

@mjbright

Summary

Micro-services offer new deployment

@mjbright

Summary

Micro-services offer new deployment

- ease of deployment

@mjbright

Summary

Micro-services offer new deployment

- ease of deployment

- ease of scaling

@mjbright

Summary

Micro-services offer new deployment

- ease of deployment

- ease of scaling

- ease of upgrades

@mjbright

Summary

Micro-services offer new deployment

- ease of deployment

- ease of scaling
- ease of upgrades

- "Best in Class” polyglot implementation

@mjbright

Summary

Micro-services offer new deployment

- ease of deployment

- ease of scaling
- ease of upgrades

- "Best in Class” polyglot implementation

Hybrid approaches will be adopted

@mjbright

Summary

Micro-services offer new deployment

- ease of deployment

- ease of scaling
- ease of upgrades

- "Best in Class” polyglot implementation

Hybrid approaches will be adopted

- combining container-based micro-services, VMs, Serverless ...

Slides & source code at https://mjbright.github.io/Talks @mjbright

https://mjbright.github.io/Talks

Thank you'!

Questions ?

B |inkedin.com/in/mijbright ® github.com/mibright

Training classes available

Slides & source code at https://mjbright.github.io/Talks

https://mjbright.github.io/Talks

Resources

minikube

Slides & source code at https://mjbright.github.io/Talks @mjbright

https://github.com/kubernetes/minikube/releases
https://kubernetes.io/docs/getting-started-guides/minikube/
https://kubernetes.io/docs/tutorials/stateless-application/hello-minikube/
https://mjbright.github.io/Talks

Resources - Articles

Slides & source code at https://mjbright.github.io/Talks @mjbright

https://martinfowler.com/articles/microservices.html
https://www.mulesoft.com/lp/whitepaper/api/top-microservices-patterns
https://www.fullstackpython.com/microservices.html
https://medium.com/solo-io/building-hybrid-apps-with-gloo-1eb96579b070
https://medium.com/@ssola/building-microservices-with-python-part-i-5240a8dcc2fb
http://container-solutions.com/kubernetes-deployment-strategies/
https://mjbright.github.io/Talks

Resources - Books

v

Slides & source code at https://mjbright.github.io/Talks @mjbright

https://ziade.org/2017/07/26/python-microservices-development/
https://mjbright.github.io/Talks

