
Developing Micro-services with Kubernetes

24 April 2018, CodeEurope.pl

Michael Bright, @mjbright

Slides & source code at https://mjbright.github.io/Talks 1 / 56

https://mjbright.github.io/Talks


Michael Bright, @mjbright  

Cloud Native Solution Architect

Trainer: Kubernetes, Serverless, Docker, CloudNative

Past researcher, dev, team lead, dev advocate

British, living in France for 25-years

Docker Community Lead, Python User Group

 linkedin.com/in/mjbright  github.com/mjbright
2 / 56



Outline

Monoliths to Micro-services

Micro-service design patterns

Kubernetes

Operations

Demo

Tools

@mjbright 3 / 56



Outline

Monoliths to Micro-services

Micro-service design patterns

Kubernetes

Operations

Demo

Tools

@mjbright 4 / 56



First ... a bit of history

@mjbright 5 / 56



First ... a bit of history

Note: But the future is hybrid ...

@mjbright 5 / 56



Monoliths to Micro-services
Monoliths are deployed, scaled, upgraded, reimplemented as complete
units

web . . . . 

Individual µ-service components can be deployed, scaled, upgraded,
reimplemented ...

web

@mjbright 6 / 56



Advantages of Micro-services
Separation of Concerns - "do one thing well"

@mjbright 7 / 56



Advantages of Micro-services
Separation of Concerns - "do one thing well"

Smaller Projects/teams

@mjbright 7 / 56



Advantages of Micro-services
Separation of Concerns - "do one thing well"

Smaller Projects/teams

Ease Scaling, Deployment, Testing, Evolution

@mjbright 7 / 56



Advantages of Micro-services
Separation of Concerns - "do one thing well"

Smaller Projects/teams

Ease Scaling, Deployment, Testing, Evolution

Loosely coupled components

@mjbright 7 / 56



Advantages of Micro-services
Separation of Concerns - "do one thing well"

Smaller Projects/teams

Ease Scaling, Deployment, Testing, Evolution

Loosely coupled components

Allow for composition of new services

@mjbright 7 / 56



Advantages of Micro-services
Separation of Concerns - "do one thing well"

Smaller Projects/teams

Ease Scaling, Deployment, Testing, Evolution

Loosely coupled components

Allow for composition of new services

So are they a panacea?

@mjbright 7 / 56



Disadvantages
Greater complexity

Requires more orchestration
Greater organizational complexity
Monitoring, debugging is more difficult

@mjbright 8 / 56



Disadvantages
Greater complexity

Requires more orchestration
Greater organizational complexity
Monitoring, debugging is more difficult

More network communication

Network error handling
Performance

@mjbright 8 / 56



Disadvantages
Greater complexity

Requires more orchestration
Greater organizational complexity
Monitoring, debugging is more difficult

More network communication

Network error handling
Performance

Still requires best practices

Behaviour and Test-Driven Development
CI/CD
Documentation of interfaces/APIs
Stable interfaces/APIs

@mjbright 8 / 56



Outline

Monoliths to Micro-services

Micro-service design patterns

Kubernetes

Operations

Demo

Tools

@mjbright 9 / 56



Architecture Design Patterns
Standard Component Patterns

@mjbright 10 / 56



Architecture Design Patterns
Standard Component Patterns

Fine-grained SOA - Micro-services(!)

@mjbright 10 / 56



Architecture Design Patterns
Standard Component Patterns

Fine-grained SOA - Micro-services(!)

Strangler

@mjbright 10 / 56



Architecture Design Patterns
Standard Component Patterns

Fine-grained SOA - Micro-services(!)

Strangler

API Gateway

@mjbright 10 / 56



Architecture Design Patterns
Standard Component Patterns

Fine-grained SOA - Micro-services(!)

Strangler

API Gateway

Service Mesh

@mjbright 10 / 56



Architecture Design Patterns
Standard Component Patterns

Fine-grained SOA - Micro-services(!)

Strangler

API Gateway

Service Mesh

Hybrid Apps

@mjbright 10 / 56



Design Pattern - API Gateway
Exposes internal APIs via single external entry
point.

Offload common functions
rate limiting, security, authorisation
protection against DDoS
reduces µ-service complexity

@mjbright 11 / 56



Design Pattern - API Gateway
Exposes internal APIs via single external entry
point.

Offload common functions
rate limiting, security, authorisation
protection against DDoS
reduces µ-service complexity

Hides internal infrastructure detail
service routing, load-balancing

@mjbright 11 / 56



Design Pattern - API Gateway
Exposes internal APIs via single external entry
point.

Offload common functions
rate limiting, security, authorisation
protection against DDoS
reduces µ-service complexity

Hides internal infrastructure detail

service routing, load-balancing

Prevents general access to internal infrastructure

@mjbright 11 / 56



Design Pattern - API Gateway
Exposes internal APIs via single external entry
point.

Offload common functions
rate limiting, security, authorisation
protection against DDoS
reduces µ-service complexity

Hides internal infrastructure detail

service routing, load-balancing

Prevents general access to internal infrastructure

Allows to refactor/scale/mock internal implementation

@mjbright 11 / 56



Design Pattern - API Gateway
Exposes internal APIs via single external entry
point.

Offload common functions
rate limiting, security, authorisation
protection against DDoS
reduces µ-service complexity

Hides internal infrastructure detail

service routing, load-balancing

Prevents general access to internal infrastructure

Allows to refactor/scale/mock internal implementation

Protocol version translation, e.g. REST/https to REST or SOAP/http, *-RPC ...

@mjbright 11 / 56



Design Pattern - API Gateway
Exposes internal APIs via single external entry
point.

Offload common functions
rate limiting, security, authorisation
protection against DDoS
reduces µ-service complexity

Hides internal infrastructure detail

service routing, load-balancing

Prevents general access to internal infrastructure

Allows to refactor/scale/mock internal implementation

Protocol version translation, e.g. REST/https to REST or SOAP/http, *-RPC ...

Needs to scale, be H.A.

@mjbright 11 / 56



Design Pattern - API Gateway

 

Service 1
(REST/http)

API Gateway

Service2
(JSON-RPC)

Service3
(WAMP)

https://api.com/....

@mjbright 12 / 56



Design Pattern - Service Mesh
Abstraction above TCP/IP, secure reliable inter-service connectivity.

@mjbright 13 / 56



Design Pattern - Service Mesh
Abstraction above TCP/IP, secure reliable inter-service connectivity.

Offloads functionality from services in a distributed way.

@mjbright 13 / 56



Design Pattern - Service Mesh
Abstraction above TCP/IP, secure reliable inter-service connectivity.

Offloads functionality from services in a distributed way. 

@mjbright 13 / 56



Design Pattern - Hybrid Apps
Gloo allows to route between legacy apps, micro-services and serverless
incrementally adding new functionality. 

https://medium.com/solo-io/building-hybrid-apps-with-gloo-1eb96579b070

@mjbright 14 / 56

https://medium.com/solo-io/building-hybrid-apps-with-gloo-1eb96579b070


Outline

Monoliths to Micro-services

Micro-service design patterns

Kubernetes

Operations

Demo

Tools

@mjbright 15 / 56



We need Orchestration

@mjbright16 / 56



Kubernetes - Architecture

Worker
Node 1

Master Node

Worker
Node 2

Worker
Node 3

@mjbright 17 / 56



Kubernetes - Master Nodes

 
etcd
 Master

Master

Master

API

GUI
(dashboard)

CLI
(kubectl)

API

Server

Scheduler Controller

@mjbright 18 / 56



Kubernetes - Worker Nodes

Pod

 

Kubelet Container
Engine

kube-proxy
 

flat
network
 

Pod

Pod

Pod

Pod

Pod

dashboardkube-dns
Add-ons

@mjbright 19 / 56



Kubernetes - Pods
 

same ip, e.g. 192.168.1.20

Containers share some namespaces: 
    - PID, IPC, network , time sharing

A pod houses one or more containers

SidecarMain container

@mjbright 20 / 56



Kubernetes Demo

Master Node

"Worker"

Minikube single-node "tainted"

 

Flask1 Flask2 Flask3

Redis

Ingress

Load Balancer

@mjbright 21 / 56



Kubernetes - Deploying Redis
 

kubectl create -f redis-deployment.yaml deployment

ReplicaSet

Pod1

2e76: redis

@mjbright 22 / 56



Kubernetes - Deploying Redis
# kubectl run redis --image=redis:latest --port=6379

$ kubectl apply -f redis-deployment.yaml

deployment.extensions "redis" created

$ kubectl get pods

NAME                     READY     STATUS              RESTARTS   AGE

redis-68595c4d95-rr4pr   0/1       ContainerCreating   0          1s

@mjbright 23 / 56



Kubernetes - Deploying Redis (yaml)
apiVersion: extensions/v1beta1

kind: Deployment

metadata:

  labels:

    run: redis

  name: redis

spec:

  replicas: 1

  selector:

    matchLabels:

      run: redis

  template:

    metadata:

      labels:

        run: redis

    spec:

      containers:

      - image: redis:latest

        name: redis

        ports:

        - containerPort: 6379

@mjbright 24 / 56



Kubernetes - Deploying Flask
 

kubectl create -f flask-deployment.yaml deployment

ReplicaSet

Pod2

1f3d: flask:v1

Pod1

2e76: flask:v1

@mjbright 25 / 56



Kubernetes - Deploying Flask
# kubectl run flask-app --image=$IMAGE --port=5000

$ kubectl apply -f flask-deployment.yaml

deployment.extensions "flask-app" created

$ kubectl get pods

NAME                        READY     STATUS              RESTARTS   AGE

flask-app-8577b44db-96cht   0/1       Pending             0          1s

redis-68595c4d95-rr4pr      0/1       ContainerCreating   0          1s

@mjbright 26 / 56



Kubernetes - Deploying Flask (yaml)
apiVersion: extensions/v1beta1

kind: Deployment

metadata:

  labels:

    run: flask-app

  name: flask-app

spec:

  replicas: 1

  selector:

    matchLabels:

      run: flask-app

  template:

    metadata:

      labels:

        run: flask-app

    spec:

      containers:

      - image: mjbright/flask-web:v1

        name: flask-app

        ports:

        - containerPort: 5000

@mjbright 27 / 56



Kubernetes - Exposing Services

Master User

WorkerWorker

pod

pod

pod

pod

Service
IP:port

@mjbright 28 / 56



Exposing Services (LoadBalancer)

Master User

Worker

pod

pod

IP:port External
Load Balancer

Worker

pod

pod

Service

@mjbright 29 / 56



Exposing Services (NodePort)

Master User

WorkerWorker

pod

pod

pod

pod

IP:port

User connects

to IP/port of one

of the NodesIP:port

Service

@mjbright 30 / 56



Exposing Services (IngressController)

Master User

Worker

pod

pod

Ingressroute

Worker

pod

pod

Service

@mjbright 31 / 56



Exposing Redis Service (LoadBalancer)
# kubectl expose deployment redis --type=LoadBalancer

$ kubectl apply -f redis-service.yaml

service "redis" created

$ kubectl get svc

NAME         TYPE           CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE

kubernetes   ClusterIP      10.96.0.1        <none>        443/TCP          5h

redis        LoadBalancer   10.101.158.201   <pending>     6379:31218/TCP   1s

@mjbright 32 / 56



Exposing Redis Service (LoadBalancer)
apiVersion: v1

kind: Service

metadata:

  labels:

    run: redis

  name: redis

spec:

  ports:

  - port: 6379

    protocol: TCP

    targetPort: 6379

  selector:

    run: redis

  type: LoadBalancer

@mjbright 33 / 56



Exposing Flask Service (LoadBalancer)
# kubectl expose deployment flask-app --type=LoadBalancer

$ kubectl apply -f flask-service.yaml

service "flask-app" created

$ kubectl get svc

NAME         TYPE           CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE

flask-app    LoadBalancer   10.103.154.19    <pending>     5000:32201/TCP   1s

kubernetes   ClusterIP      10.96.0.1        <none>        443/TCP          5h

redis        LoadBalancer   10.101.158.201   <pending>     6379:31218/TCP   2s

@mjbright 34 / 56



Exposing Flask Service (LoadBalancer)
apiVersion: v1

kind: Service

metadata:

  labels:

    run: flask-app

  name: flask-app

spec:

  ports:

  - port: 5000

    protocol: TCP

    targetPort: 5000

  selector:

    run: flask-app

  type: LoadBalancer

@mjbright 35 / 56



Exposing Services (Ingress)
$ minikube addons enable ingress

ingress was successfully enabled

$ kubectl apply -f misc/ingress-definition.yaml        

ingress.extensions "ingress-definitions" created

$ sudo vi /etc/hosts

...

192.168.99.100  minikube.test flaskapp.test

@mjbright 36 / 56



Exposing Services (Ingress)
apiVersion: extensions/v1beta1

kind: Ingress

metadata:

  name: ingress-definitions

  annotations:

    nginx.ingress.kubernetes.io/rewrite-target: /

spec:

  backend:

    serviceName: default-http-backend

    servicePort: 80

  rules:

  - host: minikube.test

    http:

      paths:

      - path: /

        backend:

          serviceName: k8sdemo

          servicePort: 8080

  - host: flaskapp.test

    http:

      paths:

      - path: /flask

        backend:

          serviceName: flask-app

          servicePort: 5000

@mjbright 37 / 56



Exposing Services (Ingress)
$ minikube service list

|-------------|----------------------|-----------------------------|

|  NAMESPACE  |         NAME         |             URL             |

|-------------|----------------------|-----------------------------|

| default     | flask-app            | http://192.168.99.100:32201 |

| default     | k8sdemo              | http://192.168.99.100:31280 |

| default     | redis                | http://192.168.99.100:31218 |

| kube-system | kubernetes-dashboard | http://192.168.99.100:30000 |

|-------------|----------------------|-----------------------------|

$ curl http://192.168.99.100:31280

$ curl http://minikube.test/k8sdemo

@mjbright 38 / 56



Exposing Services (Ingress)
$ minikube service list

|-------------|----------------------|-----------------------------|

|  NAMESPACE  |         NAME         |             URL             |

|-------------|----------------------|-----------------------------|

| default     | flask-app            | http://192.168.99.100:32201 |

| default     | k8sdemo              | http://192.168.99.100:31280 |

| default     | redis                | http://192.168.99.100:31218 |

| kube-system | kubernetes-dashboard | http://192.168.99.100:30000 |

|-------------|----------------------|-----------------------------|

$ curl http://192.168.99.100:32201

[flask-app-8577b44db-kbwpn] Redis counter value=214

$ curl http://flaskapp.test/flask

[flask-app-8577b44db-kbwpn] Redis counter value=215

@mjbright 39 / 56



Outline

Monoliths to Micro-services

Micro-service design patterns

Kubernetes

Operations

Demo

Tools

@mjbright 40 / 56



Operations
H.A.

Scaling

Rolling Upgrade

Strategies

Health Checks

@mjbright 41 / 56



Operations - achieving High Availability
Achieved through running multiple instances across multiple nodes of the
data center

resilience to node outages

resilience to pod outages or poor response times

@mjbright 42 / 56



Operations - Scaling
# kubectl scale deploy flask-app --replicas=4

$ kubectl edit -f flask-deploy.yaml

...

spec:

  replicas: 4

@mjbright 43 / 56



Operations - Rolling Upgrades
Several strategies exist

recreate   - terminate old version before releasing new one

@mjbright 44 / 56



Operations - Rolling Upgrades
Several strategies exist

recreate   - terminate old version before releasing new one

ramped   - gradually release a new version on a rolling update fashion

@mjbright 44 / 56



Operations - Rolling Upgrades
Several strategies exist

recreate   - terminate old version before releasing new one

ramped   - gradually release a new version on a rolling update fashion

blue/green   - release new version alongside old version then switch

@mjbright 44 / 56



Operations - Rolling Upgrades
Several strategies exist

recreate   - terminate old version before releasing new one

ramped   - gradually release a new version on a rolling update fashion

blue/green   - release new version alongside old version then switch

canary   - release new version to subset of users, proceed to full rollout

@mjbright 44 / 56



Operations - Rolling Upgrades
Several strategies exist

recreate   - terminate old version before releasing new one

ramped   - gradually release a new version on a rolling update fashion

blue/green   - release new version alongside old version then switch

canary   - release new version to subset of users, proceed to full rollout

a/b testing   - release new version to subset of users in a precise way

(HTTP headers, cookie, weight, etc.).

@mjbright 44 / 56



Operations - Rolling Upgrade
Ramped

# kubectl set image deploy flask-app flask-app=mjbright/flask-web:v2

$ kubectl edit -f flask-deploy.yaml
$ kubectl rollout status deployment/flask-app

...

    spec:

      containers:

      - image: mjbright/flask-web:v2

@mjbright 45 / 56



Outline

Monoliths to Micro-services

Micro-service design patterns

Kubernetes

Operations

Demo

Tools

@mjbright 46 / 56



Demo

Master Node

"Worker"

Minikube single-node "tainted"

 

Flask1 Flask2 Flask3

Redis

Ingress

Load Balancer

@mjbright 47 / 56



Outline

Monoliths to Micro-services

Micro-service design patterns

Kubernetes

Operations

Demo

Tools

@mjbright 48 / 56



Tools
Tools

Helm (use to install tools)
Prometheus
Squash
Gloo
Istio / Service Meshes / Envoy

@mjbright 49 / 56



Summary
Getting started with Micro-services

@mjbright 50 / 56



Summary
Getting started with Micro-services

If migrating monolith, take small steps

@mjbright 50 / 56



Summary
Getting started with Micro-services

If migrating monolith, take small steps

Secure your services behind firewall/API gw

@mjbright 50 / 56



Summary
Getting started with Micro-services

If migrating monolith, take small steps

Secure your services behind firewall/API gw

Services must use public APIs only

@mjbright 50 / 56



Summary
Getting started with Micro-services

If migrating monolith, take small steps

Secure your services behind firewall/API gw

Services must use public APIs only

Choose "best" technology for each component

@mjbright 50 / 56



Summary
Getting started with Micro-services

If migrating monolith, take small steps

Secure your services behind firewall/API gw

Services must use public APIs only

Choose "best" technology for each component

Transform technology and your organization

@mjbright 50 / 56



Summary
Getting started with Micro-services

If migrating monolith, take small steps

Secure your services behind firewall/API gw

Services must use public APIs only

Choose "best" technology for each component

Transform technology and your organization

Automate, automate, automate ...

@mjbright 50 / 56



Summary
Getting started with Kubernetes

@mjbright 51 / 56



Summary
Getting started with Kubernetes

Start by learning Docker principles

@mjbright 51 / 56



Summary
Getting started with Kubernetes

Start by learning Docker principles

Experiment by Dockerizing some applications

@mjbright 51 / 56



Summary
Getting started with Kubernetes

Start by learning Docker principles

Experiment by Dockerizing some applications

Learn about Container Orchestration

@mjbright 51 / 56



Summary
Getting started with Kubernetes

Start by learning Docker principles

Experiment by Dockerizing some applications

Learn about Container Orchestration

Hands-on with Kubernetes online or Minikube(*)

@mjbright 51 / 56



Summary
Micro-services offer new deployment

possibilities

@mjbright 52 / 56



Summary
Micro-services offer new deployment

possibilities

- ease of deployment

@mjbright 52 / 56



Summary
Micro-services offer new deployment

possibilities

- ease of deployment

- ease of scaling

@mjbright 52 / 56



Summary
Micro-services offer new deployment

possibilities

- ease of deployment

- ease of scaling

- ease of upgrades

@mjbright 52 / 56



Summary
Micro-services offer new deployment

possibilities

- ease of deployment

- ease of scaling

- ease of upgrades

- "Best in Class" polyglot implementation

@mjbright 52 / 56



Summary
Micro-services offer new deployment

possibilities

- ease of deployment

- ease of scaling

- ease of upgrades

- "Best in Class" polyglot implementation

Hybrid approaches will be adopted

@mjbright 52 / 56



Summary
Micro-services offer new deployment

possibilities

- ease of deployment

- ease of scaling

- ease of upgrades

- "Best in Class" polyglot implementation

Hybrid approaches will be adopted

- combining container-based micro-services, VMs, Serverless ...

@mjbrightSlides & source code at https://mjbright.github.io/Talks 52 / 56

https://mjbright.github.io/Talks


Thank you !

Questions ?
Michael Bright, @mjbright

 linkedin.com/in/mjbright  github.com/mjbright

Training classes available

Slides & source code at https://mjbright.github.io/Talks 53 / 56

https://mjbright.github.io/Talks


Resources

Download https://github.com/kubernetes/minikube/releases

Documentation https://kubernetes.io/docs/getting-started-guides/minikube/

Hello Minikube
https://kubernetes.io/docs/tutorials/stateless-application/hello-
minikube/

@mjbrightSlides & source code at https://mjbright.github.io/Talks 54 / 56

https://github.com/kubernetes/minikube/releases
https://kubernetes.io/docs/getting-started-guides/minikube/
https://kubernetes.io/docs/tutorials/stateless-application/hello-minikube/
https://mjbright.github.io/Talks


Resources - Articles
Martin Fowler https://martinfowler.com/articles/microservices.html

MuleSoft, "The top 6
Microservices Patterns"

https://www.mulesoft.com/lp/whitepaper/api/top-
microservices-patterns

FullStack Python https://www.fullstackpython.com/microservices.html

Idit Levine
https://medium.com/solo-io/building-hybrid-apps-
with-gloo-1eb96579b070

SSola
https://medium.com/@ssola/building-microservices-
with-python-part-i-5240a8dcc2fb

Deployment
http://container-solutions.com/kubernetes-
deployment-strategies/

@mjbrightSlides & source code at https://mjbright.github.io/Talks 55 / 56

https://martinfowler.com/articles/microservices.html
https://www.mulesoft.com/lp/whitepaper/api/top-microservices-patterns
https://www.fullstackpython.com/microservices.html
https://medium.com/solo-io/building-hybrid-apps-with-gloo-1eb96579b070
https://medium.com/@ssola/building-microservices-with-python-part-i-5240a8dcc2fb
http://container-solutions.com/kubernetes-deployment-strategies/
https://mjbright.github.io/Talks


Resources - Books
Publisher Title, Author

O'Reilly
"Building Microservices", Sam Newman,
July 2015

PacktPub
"Python Microservices Development",
Tarek Ziade, July 2017

@mjbrightSlides & source code at https://mjbright.github.io/Talks 56 / 56

https://ziade.org/2017/07/26/python-microservices-development/
https://mjbright.github.io/Talks

