
Technologies
3	juillet	2017,	RMLL	St-Etienne,	Michael	Bright

@mjbright

Agenda
What	are	Unikernels	?

What	they	are	not.

Why	Unikernels	?

Advantages	/	Characteristics
Application	domains

Implementations	&	Tools

Demos

Usage:	Baremetal	anyone	?

Where’s	it	all	heading	?

@mjbright

What's	it	all	about	?

@mjbright

What	are	Unikernels?

“Unikernels	are	specialized,	single-address-space	machine
images	constructed	by	using	library	operating	systems”

“What	are	Unikernels”,	unikernel.org

@mjbright

What	are	Unikernels?

“Unikernels	are	specialized,	single-address-space	machine
images	constructed	by	using	library	operating	systems”

“What	are	Unikernels”,	unikernel.org

“VMs	aren't	heavy,	OSes	are"

Alfred	Bratterud,	#includeOS

@mjbright

What	are	Unikernels?	-	They	are	"Library	OS"
Specialized	applications
built	with	only	the	"OS"
components	they	need.

A	Unikernel	is	an	image
able	to	run	

directly	as	a	VM	

(on	bare	metal?)

"OS"	components	such
as	Network	stack,	File-
system,	Device	drivers

are	optional

typically,	there	is	no
filesystem.	

So	configuration	is
stored	in	the	unikernel
application	binary@mjbright

Unikernels:	What	they	are	not	...	General	Purpose
OS	kernels	with	unneeded	features	e.g.	floppy	drivers,	designed	to	run	any
software	on	any	hardware	are	huge	-	lines	of	code

Unikernels	are	not	"top-down"	minified	versions	of	General	Purpose	OSes	...
@mjbright

Unikernels:	What	they	are	not	...	minified	OS

Container	hosts
Minimal	Linux	distributions	have	been	created	with	similar	goals	to
Unikernels,	aimed	to	be	minimal	host	OS	for	container	engines,	e.g.

CoreOS	Linux
Project	Atomic
RancherOS

They	aim	to	be

Secure
Less	features/lines	of	code	:	reduced	attack	surface
Atomic	updates	of	system	(not	quite	immutable)

Fast	to	boot	:	Small	binary	size
Specialized	to	run	containers

But	these	are	still	reduced	versions	of	general	purpose	OSes	and	so	have	many
unnecessary	features.

@mjbright

Unikernels:	What	they	are	not	...	minified	OS
	

In	April	2017	Docker	open	sourced	LinuxKit	a	way	of	building	minimal	Linux
distributions	for	hosting	containers.

@mjbright 5

Unikernels:	What	they	are	not	...	minified	OS
	

In	April	2017	Docker	open	sourced	LinuxKit	a	way	of	building	minimal	Linux
distributions	for	hosting	containers.

LinuxKit	is	also	a	specialized	Container	Host	with

declarative	specification	of	the	system	components	to	include
services	and	applications	encapsulated	in	containers
MirageSDK	...	looks	interesting	...

@mjbright 5

Unikernels:	What	they	are	not	...	minified	OS
	

In	April	2017	Docker	open	sourced	LinuxKit	a	way	of	building	minimal	Linux
distributions	for	hosting	containers.

LinuxKit	is	also	a	specialized	Container	Host	with

declarative	specification	of	the	system	components	to	include
services	and	applications	encapsulated	in	containers
MirageSDK	...	looks	interesting	...

LinuxKit	is	still	based	on	a	General	Purpose	Linux	Kernel	but	allows	for	much
customization	of	the	base	system.

It's	just	one	step	closer	to	Unikernels	...

@mjbright 5

Unikernels:	What	they	are	not	...	minified	OS
	

In	April	2017	Docker	open	sourced	LinuxKit	a	way	of	building	minimal	Linux
distributions	for	hosting	containers.

LinuxKit	is	also	a	specialized	Container	Host	with

declarative	specification	of	the	system	components	to	include
services	and	applications	encapsulated	in	containers
MirageSDK	...	looks	interesting	...

LinuxKit	is	still	based	on	a	General	Purpose	Linux	Kernel	but	allows	for	much
customization	of	the	base	system.

It's	just	one	step	closer	to	Unikernels	...

...	who	knows	what	Docker	will	do	next	??	...

@mjbright 5

Unikernels:	What	they	are	not	...	summary
They	are	not	minified	general	purpose	OS

Not	µ-kernels
Not	minified	Linux	kernels	or	Container	OS

@mjbright

Unikernels:	What	they	are	not	...	summary
They	are	not	minified	general	purpose	OS

Not	µ-kernels
Not	minified	Linux	kernels	or	Container	OS

They	are	not	real-time	Oses

But	they	are	very	fast

@mjbright

Unikernels:	What	they	are	not	...	summary
They	are	not	minified	general	purpose	OS

Not	µ-kernels
Not	minified	Linux	kernels	or	Container	OS

They	are	not	real-time	Oses

But	they	are	very	fast

They	are	not

Multi-kernels	(though	HermitCore	is	!)
Multi-process	(though	Graphene	is	!)

@mjbright

Unikernels:	What	they	are	not	...	summary
They	are	not	minified	general	purpose	OS

Not	µ-kernels
Not	minified	Linux	kernels	or	Container	OS

They	are	not	real-time	Oses

But	they	are	very	fast

They	are	not

Multi-kernels	(though	HermitCore	is	!)
Multi-process	(though	Graphene	is	!)

They	are	not	all	the	same,	but	work	on	similar	principles	...

@mjbright

Unikernels:	What	they	are	not	...	summary
They	are	not	minified	general	purpose	OS

Not	µ-kernels
Not	minified	Linux	kernels	or	Container	OS

They	are	not	real-time	Oses

But	they	are	very	fast

They	are	not

Multi-kernels	(though	HermitCore	is	!)
Multi-process	(though	Graphene	is	!)

They	are	not	all	the	same,	but	work	on	similar	principles	...

Building	a	specialized	application	with	only	the	"OS"	components	needed
==>	a	"bottom-up"	approach

@mjbright

Unikernels:	Are	...
Very	small	compared	to	an	application	+	OS

use	few	resources
immutable,	suitable	for	micro-services
No	legacy	drivers
No	unneeded	shell	-	did	I	mention	this?

@mjbright

Unikernels:	Are	...
Very	small	compared	to	an	application	+	OS

use	few	resources
immutable,	suitable	for	micro-services
No	legacy	drivers
No	unneeded	shell	-	did	I	mention	this?

Have	no	separate	kernel	space

No	need	to	copy	between	kernel	and	user	space

@mjbright

Unikernels:	Are	...
Very	small	compared	to	an	application	+	OS

use	few	resources
immutable,	suitable	for	micro-services
No	legacy	drivers
No	unneeded	shell	-	did	I	mention	this?

Have	no	separate	kernel	space

No	need	to	copy	between	kernel	and	user	space

More	secure

small	attack	surface
If	compromised,	the	attacker	can’t	do	much	-	no	shell,	users,	processes	...

@mjbright

Unikernels:	Are	...
Very	small	compared	to	an	application	+	OS

use	few	resources
immutable,	suitable	for	micro-services
No	legacy	drivers
No	unneeded	shell	-	did	I	mention	this?

Have	no	separate	kernel	space

No	need	to	copy	between	kernel	and	user	space

More	secure

small	attack	surface
If	compromised,	the	attacker	can’t	do	much	-	no	shell,	users,	processes	...

Fast	to	boot

Possibility	of	on	demand	services

@mjbright

Unikernels:	Are	...
Very	small	compared	to	an	application	+	OS

use	few	resources
immutable,	suitable	for	micro-services
No	legacy	drivers
No	unneeded	shell	-	did	I	mention	this?

Have	no	separate	kernel	space

No	need	to	copy	between	kernel	and	user	space

More	secure

small	attack	surface
If	compromised,	the	attacker	can’t	do	much	-	no	shell,	users,	processes	...

Fast	to	boot

Possibility	of	on	demand	services

More	difficult	to	develop

																					libraries,	languages,	debugging	limitations
@mjbright

Unikernels:	Application	Domains

Cloud	Computing	and	NFV
Fast	to	boot:	On	demand	services
Secure	immutable	images

@mjbright

Unikernels:	Application	Domains

Cloud	Computing	and	NFV
Fast	to	boot:	On	demand	services
Secure	immutable	images

IoT	/	Embedded
Small	images	for	OTA	updates
Secure	immutable	images

@mjbright

Unikernels:	Application	Domains

Cloud	Computing	and	NFV
Fast	to	boot:	On	demand	services
Secure	immutable	images

IoT	/	Embedded
Small	images	for	OTA	updates
Secure	immutable	images

HPC
Secure	in	the	cloud
Very	efficient	(no	context	switches,	just	1	process)

@mjbright

Unikernel	implementations

@mjbright

Unikernel	Implementations:	2	families

Clean-Slate Legacy

-	A	minimalist	approach -	POSIX	compatibility
-	Re-implement	all	OS	functions -	Re-use	existing	libraries
-	Typically	uses	type	safe	language -	Possible	binary	compatibility
-	Very	small	code	size,	resources -	Small	to	large	code	size/resources
-	Harder	to	develop	apps -	Easier	to	develop	apps

Unikernel	Implementations:	2	families

Clean-Slate Legacy

-	A	minimalist	approach -	POSIX	compatibility
-	Re-implement	all	OS	functions -	Re-use	existing	libraries
-	Typically	uses	type	safe	language -	Possible	binary	compatibility
-	Very	small	code	size,	resources -	Small	to	large	code	size/resources
-	Harder	to	develop	apps -	Easier	to	develop	apps

This	means	that	clean-slate	Unikernels	tend	to	be	implemented	solely	in	one
high-level	language	(and	possibly	derived	languages)

Unikernel	Implementations:	2	families

Clean-Slate Legacy

-	A	minimalist	approach -	POSIX	compatibility
-	Re-implement	all	OS	functions -	Re-use	existing	libraries
-	Typically	uses	type	safe	language -	Possible	binary	compatibility
-	Very	small	code	size,	resources -	Small	to	large	code	size/resources
-	Harder	to	develop	apps -	Easier	to	develop	apps

This	means	that	clean-slate	Unikernels	tend	to	be	implemented	solely	in	one
high-level	language	(and	possibly	derived	languages)

We	can	see	that	Legacy	Unikernels	trade	off	some	principles	for	ease	of	use	...

Unikernel	Implementations:

Clean-Slate Legacy

MirageOS	(Ocaml) OSv
HalVM	(Haskell) Rumprun	(+LKL)
LING	(Erlang) Runtime.js
IncludeOS	(C/C++) HermitCore

Graphene
ClickOS
Vorteil
Clive
Magnios
Ultibo
Drawbridge
...	others	?	...

There's	some	collaboration	going	on	across	projects	especially	to	use	some
common	underlying	layers	such	as	Minio,	Solo5/ukvm.@mjbright 10

	
mirage.io	

Clean	Slate	

Open	Source	

Backing
(Docker/Xen)

OCaml-Based	

MirageOS	"Library	OS"	components	and	apps	are	written
in	Ocaml	,	a	type-safe	functional	(&	OO)	language	with
extensive	libraries.

The	mirage	tool	is	used	to	build	Unikernels	for	various
backends:

Xen	Hypervisor	(PV)
Unix	(Linux	or	OS/X	binaries)
MirageOS	3	(/Solo5)	supports	kvm	(/ukvm)	and	xhyve

Building	applications	for	unix	or	xen

mirage	configure	-t	[unix|xen|ukvm]
make	depend
make
./mir-console

Use	cases:	BNC	Pinata	 	,	E///	Research	NFV,	PayGarden

Unikernel	Implementations:	MirageOS	-	Xen	project

@mjbright

https://mirage.io/
https://en.wikipedia.org/wiki/OCaml
http://ownme.ipredator.se/

	
halvm.org	

Clean	Slate	

Open	Source	

Backing
(Galois)

A	port	of	GHC	(the	Glasgow	Haskell	Compiler)	to	run	as	a
Unikernel

Runs	on	Xen

Considering	port	to	Solo5	for	HalVM	v3.

[2012]	HalVM	is	a	"nifty	platform"	for

developing	simple	cloud	services
creating	critical,	isolated	services

Aimed	at	highly	secure	network	appliances	such	as
CyberChaff

Unikernel	Implementations:	HalVM

@mjbright

http://halvm.org/
https://formal.tech/products/cyberchaff/

	
includeos.org	

Clean	Slate	

Open	Source	

Backing
(IncludeOS)	

C/C++	
FAQ

Written	in	C++.

Create	Unikernel	from	an	application	by	including
#include	<os>

Runs	on	hypervisors	(KVM,	VMWare)	maybe	baremetal	...

Single-threaded,	single-process,	single-memory	space

Delegates	to	route	messages	between	TCP/IP	stack
components.

No	blocking	POSIX	calls	implemented	yet,	only	async	i/o.

Recent	developments:

Working	with	Mender	(mender.io)	for	OTA	updates
64-bit
ARM?
Solo5	(ukvm)

Unikernel	Implementations:	IncludeOS

@mjbright

http://www.includeos.org/
http://localhost:9001/2017-Jul-RMLL-Unikernels-WhatUsage/=%22http://includeos.readthedocs.io/en/latest/FAQ.html%22

	
osv.io	

Legacy	

Open	Source	

Backing
(Cloudius)

Written	in	C++	but	with	"POSIX"	compatibility

includes	threads,	tcp/ip,	ZFS	filesystem
support	for	other	languages	and	memory-managed
platforms	(JVM,	Go,	Lua)
used	in	Mikelangelo	EU	Project
(OpenStack+Unikernels)

Runs	on	KVM,	Xen,	VBox,	VMWare

The	OSv	Manifesto

Run	existing	Linux	apps,	run	them	faster
Boot	time	~	Exec	time
Leverage	memory-managed	platforms
Stay	open

Single	process,	address	space

TCP/IP	stack	components	(C++	classes)	communicate	via
net	channels

Possibility	for	MMU	to	handle	garbage	collection

Unikernel	Implementations:	OSv

@mjbright

http://osv.io/
https://www.mikelangelo-project.eu/2017/05/the-microservice-demo-application-running-inside-osv-unikernels-locally

	
rumpkernel.org

Legacy	

Open	Source	

Backing
(NetBSD)

A	refactoring	of	the	NetBSD	kernel	allowing	to	select	OS
modules	as	needed.

Unikernel	base	in	C/C++,	supports	many	languages

C/C++,	Lua,	PHP,	Python,	Ruby,	Node.js,	Erlang,	Go

Workflow	is

cross-compile	against	NetBSD	libc	(modified)
bake	in	the	hypervisor	choice	(not	KVM	...)
launch	VM

Baremetal	"Hypercall"	implementation.

Many	available	packages:	apache2,	nginx,	haproxy,	redis,
mysql,	sqlite,	leveldb,	tor,	mpg123

NOTE:	LKL	(Linux	Kernel	Libraries)	an	experimental
Linux	version	since	2015

Unikernel	Implementations:	Rumprun

@mjbright 15

http://rumpkernel.org/

runtimejs.org	

Legacy	

Open	Source	

Implementation	of	v8	Javascript	engine	as	a	Unikernel

Supports	Node.js	on	KVM	Hypervisor

Ongoing	discussions	about	supporting	WebAssembly	..

Unikernel	Implementations:	Runtime.js

@mjbright

http://runtimejs.org/

	
hermitcore.org

Legacy	

Open	Source	

Experimental	unikernel	from	University	of	Aachen,	initial
performance	results	are	promising.

Supports	SMP	in	multi-kernel	mode.

Modes:

"classical	unikernel"	-	runs	on	a	VM
multikernel	on	VM:	proxy	"Linux"	kernel	on	one	core,
separate	applications	on	other	cores
multikernel	on	BM:	proxy	"Linux"	kernel	on	one	core,
separate	applications	on	other	cores

Uses	Intel	OpenMP	runtime.

Languages:

C++,	Fortran,	Go	(all	via	gcc)

Unikernel	Implementations:	HermitCore

@mjbright

http://www.hermitcore.org/

Unikernel	Tools
Open	Source	tools	help	to	advance	the	various	projects.

Unik:	Unikernel	Compiler
Cloud	Foundry	project	(Dell-EMC)	compiles	several	Unikernel	Technologies

Supports:	RumpRun,	OSv,	IncludeOS,	MirageOS

'VboxUnikInstanceListener'	VM	handles	requests	from	the	'unik'	cli.

Solo5/ukvm
A	common	Unikernel	(Solo5)	base	and	(ukvm)	library	hypervisor	developed
by	IBM.

Integrated	into	MirageOS	v3	to	extend	to	KVM	support.	Other	projects
(HalVM,	IncludeOS)	are	also	considering	this	approach.	Ongoing	port	to
ARM64.

Deferpanic
																					Web	and	cli	tool	allow	to	test	deploy	Unikernels

@mjbright 20

Demo
MirageOS

compilation	for	unix
compilation/run	for	Solo5/ukvm

Runtime.js

Deferpanic.net

@mjbright 30

What's	coming?
Docker	bought	Unikernel	Systems	(main	MirageOS	developers)	in	Jan	2016

Unikernel	technology	used	in	Docker	for	Mac,	Docker	for	Windows

MirageOS	v3	released	in	March	2017

improves	MirageOS	implementation	(less	code,	more	func)
New	Solo5	backend:	kvm	via	Solo5/ukvm

Unikernels	are	becoming	easier	to	use

Adoption	of	existing	backends:	Minios/Xen,	Solo5/ukvm
LinuxKit/MirageSDK	synergies	with	MirageOS?
Docker	facilitates	Build	Ship	and	Run	for	Unikernel	technologies
Unik	project	facilitates	use	of	different	Unikernel	technologies
Cloud	Foundry	and	Kubernetes	look	to	deploy	Unikernels
Solo.io	"Squash"	project	producing	debugger	for	µ-services	and
Unikernels

Many	Unikernel	projects	are	advancing	quickly	...	and	specialized	deployment
trials	ongoing

@mjbright

Unikernels:	Usage?	Baremetal?
Specific	applications	(network	appliances	-	Hybrid	solutions)

Well-suited	for	very	specific	applications	such	as	target	networking
components

-	DNS,	DHCP,	NAT,	Firewall,	TLS,	Chaff

Can	be	used	as	standalone	appliances	or	as	secure	network	front-end.

But	what	about	Baremetal	?

Some	Unikernels	target	baremetal,	but	not	appropriate	for	all	use	cases

requires	maintaining	h/w	specific	device	drivers
may	not	support	more	than	1	core	!

You	won’t	want	to	dedicate	your	latest	Proliant	server	to	one	Unikernel	(flea
on	an	elephant’s	back),	but	rather	to	a	Hypervisor	running	Unikernels

May	be	appropriate	for	the	smallest	IoT	devices	(webcam,	sensor)@mjbright

Unikernels:	Conclusions	...
A	very	active	research	area

many	active	projects,	several	with	commercial	backers
mostly	Open	Source
healthy	collaboration	-	common	tooling	possible

Unikernels:	Conclusions	...
A	very	active	research	area

many	active	projects,	several	with	commercial	backers
mostly	Open	Source
healthy	collaboration	-	common	tooling	possible

Some	projects	adopt	a	"Clean-Slate"	approach	building	up	capabilities.

impose	a	particular	language
smallest,	most	secure	Unikernels
potentially	harder	to	develop

Other	projects	trade	off	some	of	the	Unikernel	advantages	for	"ease	of	use".

Unikernels:	Conclusions	...
A	very	active	research	area

many	active	projects,	several	with	commercial	backers
mostly	Open	Source
healthy	collaboration	-	common	tooling	possible

Some	projects	adopt	a	"Clean-Slate"	approach	building	up	capabilities.

impose	a	particular	language
smallest,	most	secure	Unikernels
potentially	harder	to	develop

Other	projects	trade	off	some	of	the	Unikernel	advantages	for	"ease	of	use".

We	will	start	to	hear	of	deployments	for	specific	use	cases

Unlikely	to	become	a	mainstream	approach

competition	from	VMs,	containers,	serverless
unless	someone	surprises	us	...

@mjbright 35

Q&A

@mjbright

Resources

@mjbright

Resources	-	General
URL

.
Unikernel.org site
Wikipedia Wiki

.
Scoop.It Unikernels
Playlist YouTube	Unikernels

@mjbright

http://unikernel.org/
https://en.wikipedia.org/wiki/Unikernel
http://www.scoop.it/t/unikernels/
https://www.youtube.com/playlist?list=PLCDlZzVd_jn8heLw_Q10gOaEflLZKyf81

Resources	-	Unikernel	Implementations
Technology Backers URL

.
MirageOS Xen mirage.io
HalVM Galois galois.com/project/halvm
LING erlangonxen.org
.

IncludeOS IncludeOS includeos.org
Rumprun NetBSD rumpkernel.org

OSv Cloudius osv.io
HermitCore Univ.	Aachen hermitcore.org

.
Unik CloudFoundry github.com/cf-unik/unik
Solo5 IBM github.com/Solo5/solo5
Ukvm IBM github.com/Solo5/solo5/tree/master/ukvm

@mjbright

http://mirage.io/
https://galois.com/project/halvm/
http://erlangonxen.org/
http://www.includeos.org/
http://rumpkernel.org/
http://osv.io/
http://www.hermitcore.org/
https://github.com/cf-unik/unik
https://github.com/Solo5/solo5
https://github.com/Solo5/solo5/tree/master/ukvm

Resources	-	Unikernel	Implementations	(2)
Technology Backers URL

.
Ultibo	(Raspi)
Clive	(Go)
Magnios
ClickOS NEC

.
Drawbridge Microsoft project/drawbridge

.
DeferPanic DeferPanic deferpanic.net

@mjbright

https://www.microsoft.com/en-us/research/project/drawbridge/
http://www.deferpanic.net/

